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I. INTRODUCTION

Admissible estimation in relation to sampling survey has been studied in great
detail by Godambe [2], [4], Godambe and Joshi [3], Joshi [6], [7], [&], Ericson
[1], Sekkappan and Thompson [10], and Scott [9]. Godambe [4], Joshi [6], [7],
Ericson [1], and Sekkappan and Thompson [10] have established the uniform
admissibility of some classes of estimator-design pairs for a finite population total
or for a finite population mean. In particular, Joshi {7] showed that the sample
mean and a sampling design of fixed sample size n are uniformly admissible for the
population mean, when the competing designs have expected sample size not less
than n.

In this paper, the admissibility of the sample proportion and the uniform
admissitility of the estimator-design pair consisting of the sample proportion and
any fixed sample size design are studied.

II. NOTATION AND DEFINITIONS

Let U denote a finite population of N identifiable elements tagged with the
labelsi=1,2,..., N, ie.
U={1,2,...,N}
Let A be a subset of U having some characteristic or attribute of interest. Define on
U a real variable x as follows:

{1, if the i-th unit of U belongs to A )
X. =

' 10, otherwise.

Let x = (Xx;, X, ..., Xy) and X be the set of all possible points x, i.e. X is a set

of the Cartesian product of N sets {0, 1 } , namely,
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X={(x{,%Xy,...,%Xn):%=0,1;i=1,2,...,N} (2)

The population proportion of units in A is
N
6= 2 x/N 3)

For estimating the population proportion 8(x), a sample s is any subset of U selected
according to some sampling design d = (S, p), where S is the sample space consisting
of all possible samples s and p is a probability measure defined or S such that

(i) O0<p(s)<lforallse€s§,
(ii) Sgs p(s)=1.

4

Every possible design of random sampling is a special case of d = (S, p).

For a sample s, n(s) will denote the number of distinct units in the sample and
will be called the sample size of s. A sampling design d = (S, p) is said to be of fixed
sample size m if p(s) = 0 whenever n(s) # m, a fixed integer.

For estimation of the population proportion 6(x), an estimator is defined as
follows:

[Definition 1] Any real function € on the product space SxX, such that (s, x)
depends on x only through those x;’s for which i € s, is called an estimator of
6(x).

[Definition 2] For a given sampling design d = (S, p), an estimator (s, x) is admis-
sible for the population proportion 6(x), if there exists no other estimator
(s, x) such that

E [ 0(s,x) - 0012 <E,[ 6(s, x) - ()] (5)
for all x € X, and the strict inequality in (5) holds for at least one x € X.
The two quantities in (5) are mean squared-errors of the two estimators, i.e. the
mean squared-error of 6(s, x) is

Epl0(s, ) - 0(01% = T [6(s,%) - 8(x)17 p(s)

[Definition 3] A pair (8, p) consisting of an estimator (s, x) and a sampling design
d = (S, p) is called a sampling strategy for estimating 8(x).
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[Definition 4] A sampling strategy (0, p) is said to be uniformly admissible for 6(x),
if there exists no other sampling strategy (8, p) such that

() Ej [n(s) ] <Ep[n(s)], (6)
(ii) Eg [ 6(s, ) - 0(x) 12 <E,[8(s, %) - 6(x) 17 (7

for all x € X, and the strict inequality holds either in (6) or for at least one
x EXin (7).

The definitions given above follow those of Godambe [2], Godambe and Joshi
[3], etc. Joshi [6] showed that in the entire class of all estimators, linear and non-
linear, biased and unbiased, the sample mean is always admissible as estimator of the
population mean on the N-dimensional Euclidean space RN or on any subset of RN
given by

{(xlax29"'axN):C1<Xi<C2,i=l,2,...,N}

where c; and ¢, are some arbitrary constants. In this paper, the sample proportion
will be proved to be admissible for the population proportion on the space X.

III. ADMISSIBILITY OF THE SAMPLE PROPORTION

Let an estimator (s, x) of the finite population proportion 6(x) of units in
A be defined as follows:

0(s,x) = Z x;/n(s), for x € X (8)

which is the sample proportion of units in A in the sample s of size n(s).

Since the value of x; on the i-th unit of U is unknown but can be determined
when the i-th unit is surveyed, x; is a random variable. The distribution of x; is
assumed to be Bernoulli distribution with probability function given by

f(x;0)= 6%(1~6)"™ Ijp,1(x)
where I, (x) is an indicator function of the set A. Furthermore, since all units in U

are independent, x,, X,, ..., Xy are independent random variables having the same
Bernoulli distribution. The distribution of x,, x,, ..., Xy will be considered as
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aprior distribution in the proof of a&missibility of the sample proportion.

[Lemma 1] Let X,, X,, ..., X be independent random variables having the
same Bernoulli distribution b(l, 8). Let 0(X,, X,, . .., X ) be a statistic and
letT=X, +X, +...+ X, then

£ 100, Xa, -y Xm) - 01261 (1 - 9)™ " dO ©9)
is minimum only when 8(X;, X;, ..., Xn) = gl X;/m with probability one.
Proof: Let x = (X, X5, . . . , Xy ). If the quantity in (9) is divided by the beta

function B(t, m-t) = I'(t) I'(in-t)/I" (m), then it becomes

1 -
Bt lm-t) £ 0-0120%1 (1-6)™"" df

(10)
=E [0 - §(x) ]2

where ® is a random variable having beta distribution with parameters t and
m-t. The mean and variance of © are respectively given by

, Var (@)= -9 (1)

mz(m+l )

E(®) =

t
m

Forall x€ {x: gl x; =t,0<t<m}, it is obvious that the following equality

holds: l
E[©- 8(x)]? = Var(®) + [E(@) - 6(x)]2 12)

which is minimized only when

=E©@=L = £ x/m (13)
i=1
Forx=(0,0,...,0o0rx=(,1,...,1)such that iglxi=t=00rm,we
have from (11)
Var (®)=0

which implies P[© = E(®)] = 1, and thus, P[0(x) = E(®)] = 1.

Hence, we have from (13)

-4 —
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0ifx=(,0,...,0 }

0(5)={1 ifx=(1,1,...,1).

Therefore, forall x € {x: x; =0, 1;i=1i, 2, ..., m } , the quantity in (9) is
. . . A —_ m
minimized only when 6(x) = iZ:DI X;/m a.e. Q.E.D.
Now we proceed to show the admissibility of the estimator (s, x) given in (8)
for the finite population proportion 8(x) in the following theorem.

[Theorem 1] For any sampling design d = (S, p), the estimator (s, x) given in (8)
is admissible for the finite population proportion 9(x).

Proof: If 9_( s, X) is not admissible for 6(x), then by definition 2 there exists an
estimator 6(s, x) such that, for all x € X,

Z PO)8(s, %) - 0(0)? < T p()(6(s, X) - 6(x))? (14)

For the sample s with sample size n(s) = N, i.e. s = U, it is enough to consider
in (14) estimator & such that 6(U, Xx) = 0(x). Now, for a sample s with n(s)
< N. Jet

85, X) = [N0(s, 0 - T x1/[N-n()] (15)
Let S* = S - U and rewrite (14) as follows:

% . p(s) [N-n(s)1? [g(s, x) - h(s, X)]?

SES*

< Z ., p(s) [N -n(s)]2 [6(s, x) - h(s, x)1? (16)

SES*

where h(s, x) = i%‘; x;/[N - n(s)].

Now taking expectation of both sides of (16) with respect to a prior distribu-
tion of x;, X,, ... ., Xy over X such that x;, x,, ..., Xy are independently
and identically distributed as Bernoulli distribution b(1, ), we have

>, () [IN-n(s)]2 Ey [ {g(s,x) - 0 }+{ 8 - h(s, x) } ]

SES*

< Z, p6) [N-n(s)]? Ey[{8(s,x)-0}+{6-hs, 0} 1?2 (17

sES*
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Noting that the expected values of the product terms on both sides of (17)
vanish due to the independence of x;’s and cancelling out the common term

. p(s) [N - n(s)]1? Ey [h(s, x) - 012 on both sides of (17), we have

T p(s) IN-n(s)]1% E, [g(s, x) - 012

sES*

< Z.p() [N-n()]? Ep[6(s,x) - 0] (18)

ZXj n(s)- £ X;
where Ey [g(s, X) - 0]2= L (85 20 - 0120 (1-9) " i

n(S)_iésxi

and E,[8(s,x)-0]2= Z [B(S,l)—elzeiéSXi(l—G)
. xXEX

On both sides of (18) are multiplied by 1/6(1-0) and then integrated with
respect to 8 from 0 to 1, we get

2. PN -n(s)] zig* Tg(s, X)

< Z,pO) IN-1()]* 2 To(s, %) (19)

E Xj-1 n(s)- = xj-1
where Tg(s, X) = fy [8(s,X)-0170° " (1-0) RE P

and similarly Tj (s, x) is defined.
For all s&S, we have from Lemma 1

Te(s, )= Tj (5,%) (20)
and the equality in (20) holds only when g(s, X) = 6(s, x). Now summing up

over all X € X on both sides of (20), we have

xe

2, T 0> 2 Ts (5,0 (1)

On both sides of (21) are multiplied by p(s)[N - n(s)]? and then summed up
over all s € S*, we get by comparison of the result with (19) that only the
equality holds in (19), i.e.
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2. P(8) IN-n(9)]1? = Ty(s, %)

SES*

= & PO IN-n®)1* 2 Ts(s, %) (22)

Since both Tg(s, x) and Ts (s, x) in (22) are non-negative, we have, for all
XE X and for all s€ES*,

Te(s, x) =Ts(s, x)
which implies
8(s, ) = 0(s, x) for all x€ X and all s€ S*. (23)
Substituting (23) in (15), we have
6 (s, x) = 0 (s, x) for all XEX and all s€S*.
Further, for the sample s = U, we have
6(U,x)=0(x) =8(U, x) for all xEX.
Hence, (s, x)=0(s, x) for all x€X and all sES.

Therefore, the strict inequality in (14) can’t hold. This completes the proof of
the theorem. Q.E.D.

IV. UNIFORM ADMISSIBILITY

For a given design d = (S, p), the sample proportion (s, x) is shown in Theorem
1 to be admissible for the finite population proportion 6(x). In this section, we will
find a class of designs in which the estimator 6(s, X) is uniformly admissible for
0(x). The two classes of sampling designs usually considered are C = {Cm} and
D= {D,, }, where

Cn={d=(S,p): p(s)=0 if n(s)#m} 24

and Dn={d=(S, p): Z e p@E)=m}, (25)

i.e. the class C consists of sampling designs of fixed sample size and the class D
contains sampling designs of fixed expected sample size. It is obvious that the class C
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is a subclass of the class D. With respect to the class D, the uniform admissibility is
defined in Definition 4.

For a given sampling design d = (S, p), let m; denote the inclusion probability
for the i-th unit of U, i.e.

m= Z p(s) (26)
soi

where s>i denotes all samples s having the i-th unit of U. Further, let m;; denote the
inclusion probability for both the i-th and j-th units of U, i.e.

= X p(s) (27)
$31,)
[Lemma 2] For a given sampling design d = (S, p), the following two equations
hold:
N
(1) Z, m= Epln(s)] (28)
S = n(s)
(2) i§j m;= Ep[(7,7) ] (29)
Proof:
$mo=3 »
Zm=2 Zops)= 2 T ps)= T n(s)ps)=Eylns)].
Sr=2 T po)= 2 E pe= Z ) ps)
iZi "< 550, sES1%) s€s 2

Epl ("1 QE.D.

The relationship between the inclusion probabilities m;’s and the sample sizes
n(s)’s is thus clear from (28) that as soon as the inclusion probabilities m;’s are
specified the expected sample size E; [n(s)] is automatically fixed for the sampling
design d = (S, p).

[Theorem 2] Let a sampling design d = (S, p) belong to the class C = {Cp, } defined
in (24) and let 8(s, x) be the sample proportion, i.e.

0(s, X) = Z xi/n(s), xEX
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then the sampling strategy (6, p) is uniformly admissible among sampling
strategies (0%, p*), where d* = (S*, p*) € D defined in (25).

Proof: If the sampling strategy (8, p) is not uniformly admissible for the finite
population proportion 6(x), then there exists a sampling strategy (8 *, p*) such
that

Ep«[n*(s)] <E,[n(s)] =m (30)
and E, [0%(s, X) - 0(x)12<E, [6(s, ) - 6(x)]? 31

for all x € X, the strict inequality holds either in (30) or for at least one x €%
in (31). Define g*(s, x) on S* x X as follows:

NO*(s, x) = [N -n*(s)] g*(s,x) + Z X (32)
and let S, ={ s€S: p(s) >0 } and S,. ={sES*: p*(s) >0}, then substituting

(32) in (31), we have, for all x € %,

sezsptp*(S)[N -n*(s)]1? [g*(s, x) - h*(s, x)]?

< sElepp(S) (N -m)?[8(s, x) - h(s, X)]? (33)
where h*(s, x) = igs Xi/ [N —=n*(s)] for s€S,«
and h(s, x) = igs xi/ (N -m) for sE€S, .
Now, taking the expectations of both sides of (33) with respect to a prior
distribution of x,, x,, ..., Xy on X, under which all the x; (i=1,2,....,N)

are independently and identically distributed as Bernoulli distribution b(1, 8),
we have ,

& P*)N -n*(s)]? Ey [g*(s, X) - h*(s, X)]?
s pt

< sezsp p(s) (N - m)? Ey [6(s, X) - hs, x)1? (34)

where, for s€5,.,
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Ep [g*(s, X) - h*(s, X)]?
= B, [g*(s, X) - 012+ By [h*(s,x) - 612
= Ep [g¥(s, x) - 012+ 6(1 - 0)/[N - n*(s)]
and, for s€S,,
E, [8(s, X) - h(s, x)1% = B, [0(s, x) - 012 +6(1 - )/(N - m)

Thus, (34) becomes
(&5 PHOIN-n*(s)] *Ey [g%(s, x) - 1%+ 0(1-0)Sgsp*p*(5)[N ~n*(s)]
<s§:spp(8)(N -m)?E, [0(s, x)-612 +0(1- G)Sélspp(S)(N - m)

Since T p*(s)= Z_ p(s) = 1, we have, after cancelling out the common term
Sesp* SESp

N6(1 - 9) on both sides of the above inequality,
SeEsp*p*(S)[N -n*(s)12E, [g*(s, X) - 81% - 6(1 - 0) Epa [n*(s)]
<S§SPP(S) (N -m)? Ey [6(s,x) ~ 0] - 6(1 - 6)m (35)
The expectations on both sides of (35) can be expressed as follows:

Ey [8*(s, x) - 012
*® 2 iésXi n*(s)-igsxi
= I, le*(s,x) - 07 05 (1 - 0)
Ey [6(s, x) - 012

= T 9 0 2 oié:sxi 1 g m-igsXi
—Zex[ (s, x) -0} (1-0)
On both sides of (35) are divided by 8(1-6) and then integrated with respect to
@ from O to 1, we get
* —n* 2 -
sgsp*p (s)IN - n*(s)] Kg,(Tg:(s, x) ~ Ep«[n*(s)]
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< gs p(s) N-m)? X Tg(s,x) -m (36)
$&S5p

xEX
wh 1 EXirl n*(s)- = X
ere Tgt(S, _)S) = L [g*(S, .)S) - 9] 2 BIES (1 _ e) i€s de

and T (s, x) is similarly defined.
If in the sampling design d* = (S*, p*), we also take the sample proportion as
an estimator for the finite population proportion, i.e.

J * = .
0% (s, x)= Z xi/n*(s),
then we have from Lemma 1
Tga(s, x) < Tyels, X) 37

for all x € X and for all s € S*, and the equality in (37) holds only when 8 *(s,
Xx) = g*(s, x). From (36) and (37), we have

Sgsp‘p*(S)[N - n*(s)]? 5gXT@‘(s, x) ~ Epe [n*(s)]
< seffspp(S) (N -m)? 2 Ts(s,x)-m (38)
The left hand side (LHS) of (38) can be computed as follows:
LHS = Z p*(s)[N n*(s)12 [ By [0%(s, x) - 012 de

8(1 8(1-6)

- Ep [n*(s)]

19(1-9) 1
sé‘.?sp‘p*(s)[N—n*(s)]z b Sy " sae 49

- Ep‘ [n*(s)]

N?E,. [ 1-2N

()

By similar computation of the right hand side (RHS) of (38), we obtain
1 )

RHS = sgspp(s)(N—m)z Jo Eol0(s, %) - 01 —— 9(1 ) dé -m

-2N

~ 11 -
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Thus, (38) becomes

< N?
N2 Epel iy 1 - 2N'< - -2N
or Eplom ] < o (39)

But, it follows from (30) that

Epe [ i ] >4 (40)
From (39) and (40), we have
Epo [y ] = = (41)

Hence, n*(s) = m for all s €S, .. It implies that the sampling design d* = (S*,
p*) is also of fixed sample size m. Therefore, the strict inequality in (30) can’t
hold.

We shall next show that the strict inequality in (31) can’t hold. Since
n*(s) = m for all s € S+, the equality in (38) holds. Thus, the equality in (37)
holds too, and hence

g*(s, X) = 0*(s, x) for all s€S,» and all xEX.
Now, we have from (32) and the above equality
0%(s, X) = 0*(s, x) = 2, Xi/m for all s€S,. and all XEX.

Let the inclusion probabilities for the unitsi (i=1, 2, ..., N) and for the pairs

of unitsiandj(ij=1,2,...,N) ford = (S, p) and d* = (S*, p*) be given by
. o= * = *
T = &, p(s), = Z, p¥s)
= * = *
Trij = Sazi,j p(s)7 7r1_| Sgi,j jo] (S).

It is then easily found that

E, [6(s, x) - 6(x)]?

i=1

> 2 5N 2
= le{ EX? [ﬁi(i\z’n -21'_Il)+1] +2i§inXj[7rij 1—:?2—— r—l\;(ﬂi + ﬂj)+1]} 42

- 12 —
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Similarly, we have

Eoe [0*(s, X) - 0(X)]* = Epe [0%(s, X) - 0(x)]?

2
=L {Eﬁ‘? (e - 28y 411+ 2,2 x5 Nreap) + 11} (43)
Now (31) clearly implies that the coefficient of x? for eachi, (i=1,2,...,N)
in the right hand side of (43) must be < the coefficient of x? in the right hand
side of (42) as otherwise (43) will exceed (42) if we put x; = 1 and all x; =0,
j#1i,j=1,2,...,N. Thus we have from (42) and (43)

*
wF <,

i=1,2,..., N

N N
then Py m*< Zm
1= 1=

[ay

But, from Lemma 2, we have
N N
Zm¥=2 T =m
i=1 i=1
Hence w¥=m,i=1,2,..., N (44)

Next, if we put x; = x; = 0 and all x, =0,k #1i, j, then in both (42) and (43) all

coefficients other than those of the terms x?, x? and 2x;x; vanish, since by

(44) the coefficients of the terms x? and x} are equal, we have

*
.k < Tij»

for all i <j.

N N
then 2zl < Zomy
1<) 1<)

But, from Lemma 2, we have

Hence n¥ = m,., forall i<j. 45)

ij ij>

It now follows from (42), (43), (44) and (45) that in (31) we have

Ep+ [6*(s, X) - 0(x)1? = E, [8(s, x) - 0(®)]?

—~ 13 —
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for all x&X and the strict inequality in (31) does not hold for any x€X. The
theorem is thus proved. Q.E.D.

V. CONCLUSION AND SUMMARY

There are two classes of sampling designs usually considered in survey-sampling,
namely C={C,,} and D={D,, } , where

Cm ={d=(S,p): p(s)=0if n(s) #m }
and Dy ={d=(S,p): I n(s)p(s)=m}.

If a sampling design d = (S, p) belongs to the class C,andif x = (x;, X3,...,Xy)is
an element of RN | the N-dimensional Euclidean space, and let (s, x) be an estima-
tor of the finite population mean 6(x) = ,51 xi/N given by

i<

6(s, 0 =g Z bix;

where (i) b; 1,i=1, 2, , N and (ii) . E b, L m, then Joshi, V. M. (1965)
showed that 6(s X) is admlss1ble for 8(x) in the class C for almost all x€ERN (Le-
besgue measure). But if x is an element of X = {x:x; i=0,1;i=1,2,. N} then
the estimator (s, x) is not necessarily admissible, since X is a set of Lebesgue
measure zero. For example, consider the artificial population U={1, 2 } and define
the sampling design d = (S, p) by p(s;) = p(s;) = %, s; ={i},i=1,2. Let

(s, x) = Z bixi, where b, =3/2,b, = 3/4.

Then, (s, X) is admissible for 6(x) = %4(x, + x, ) for almost all xER2. Now, if x€X =
{(x1,%):%x,=0,1;i=1, 2}, then

E16(s, %) - 0012 = § (2, %202 +  (x, - 0.5%,)2
Let 8* (s, x) be another estimator of 0(x) given by

0*(s, x) = Z bix;, where b} = 1, b = 3/4,
then ELO*(5, ) -0001% = £(x,=x) + £x, - 0.5%,)2.

It is obvious that

—_ 14 —
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E[0*(s, x) - 0(x)]% < E[f(s, x) - 0(x)]2

for all X€X, and the strict inequality holds when x,= 1. Thus, 6(s, x) is not admis-
sible on X.

In this paper, we have proved that the sample proportion (s, x) is admissible
for the finite population proportion 8(x) for any sampling design what so ever on X.
Further, we have proved that the sampling strategy (g, p), where 0 is the sample
proportion and the sampling design d = (S, p) is of fixed sample size, i.e. deC, is
uniformly admissible among sampling strategies (8*, p*) on X, where d* = (S*, p*)
eD.
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