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Robust diagnostics for analyzing several 2 x 2
contingency tables

Tsung-Chi Cheng*

Abstract

We propose a minimum trimmed deviances (MTD) estimator for the robust
estimation of the logistic regression model. An adoption of MTD, called the
minimum trimmed maximum-dual deviances (MTMdD) estimator, is applied
to estimate the common odds regression model and hence to identify outlying
tables when some possible outliers exist among several 2 X 2 contingency tables.
We will illustrate the methods by analyzing a real data example in the literature.

KEY WORDS: 2 x 2 contingency tables; logistic regression model; minimum
trimmed deviances estimator; Robust diagnostics

1 Introduction

The logistic regression model is one of the most powerful tools in data analysis for
medical and epidemiologic studies. The maximum likelihood estimation (MLE) is
the popular approach to calculate the coefficient estimation for a logistic regression
model, but it is sensitive to outlying responses and extreme points in the design
matrix. Outliers in the design matrix are called leverage points or influential points
in the regression literature. Both types of outliers can spoil the maximum likelihood
fit for a logistic regression analysis. However, such outlying observations are hard to
identify, because they do not always show up in the usual residual plots.

In the context of categorical variables for the contingency tables, outliers have not
been studied frequently. Outlier identification and accommodation in contingency

tables have been discussed by Kotze and Hawkins (1984), Simonoff (1988), and Yick
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and Lee (1998), with these works focusing on the identification of outliers in a single
contingency table. In practice, there exist multiple 2 x 2 contingency tables to be
analyzed. One of the principal advantages of using the logistic regression model is
that it encourages a quantitative description of how changes in risk associated with
one factor are modified by the interaction effects of other risk or nuisance variables.
A generalization of the Mantel-Haenszel estimator to non-constant odds ratios was
proposed by Davis (1985) as an alternative to the conditional maximum likelihood
for fitting log odds ratio regression models to sets of sparse 2 x 2 tables such as
those that arise in case-control studies (Breslow, 1976; Breslow and Cologne, 1986).
The presence of interaction effects in a series of 2 x 2 contingency tables depends
systematically on the variables used for strata formation. Hence, a model is considered
for this purpose, in which the log relative risk is assumed to change linearly over a
strata.

In this project we first propose a minimum trimmed deviances (MTD) estimator
for the robust estimation of the logistic regression model, which is inspired by the
least trimmed squares (LTS) technique. An adoption of MTD, called the minimum
trimmed maximum-dual deviances (MTMdD) estimator, is then used to estimate the
common odds regression model and hence to identify outlying tables for the analysis of
several 2 x 2 contingency tables. The fast algorithm is adapted to find both resulting

estimators. The proposed procedure is illustrated by using real data analysis.

2 The logistic regression model

Let there be n binomial observations of the form y;/m;, i = 1,2,... n, where E(y;) =
m;;, and m; is the success probability corresponding to the ¢th observation. The
binomial distribution for a fixed number of trials is determined by the probability m
of success. Both the mean and the variance depend only on 7; and the known number
m, of trials.

For each y; we know the number of trials m;, and in addition there is an associated

vector of p + 1 predictors x;. Assuming that the probability of success depends on



x;, then the probability function of y; can be written as:

m = Plyi=1)= f(x;0)
exp(z] B) _
TTo(zT8) =1,2,...,n, (1)

where 3 = (B, 51,...,0p) is a (p+ 1) x 1 unknown parameters vector. Note that
0 < <1 for all values of B and x;. The log odds ratio is:

lOg (ﬂ-z) = sz/Ba
1— 5

which is linear in the parameters 8. The logistic regression may be viewed as a

non-linear model with heterosceddastic errors - that is:
Y = ZBZT,B + €, € ~ bin(m;,m),

where E(e;) = mym; and Var(e;) = m;m;(1 — ;). These parameters are readily es-
timated using the method of MLE (see McCullagh and Nelder (1989) for details),

which is given by maximizing

n

L(n;y) =Y U(w(x] B); i), (2)

i=1
where n; = ' 3 and I(7(x? 3); y;) denotes the log likelihood for the ith case.
Once the estimator of 3 is obtained, denoted by B, the estimated value of the

model is:
i =] B. (3)

The fitted probabilities 7; can now be found using 7; = exp(7);)/[1 + exp(7;)]. In the
logistic regression there are several possible ways to measure the difference between
the observed and the fitted values. One of them is the signed square-root deviance

residual, which is defined as:

)

r; = sign(y; — ﬁz)\l 2y; log <?{Z> +2(m; — y;) log <m2- — yi)v (4)

m; — U
where “sign” denotes the sign of (y; — g;). When the response is binary, the signed

square-root deviance residual becomes:

ri = sign(y; — ﬁi)\/—Z[yilogfri + (1 — y;)log(1 — 7;)]. (5)
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The deviance residual provides information about how well the model fits each par-

ticular observation (see Hilbe, 2009).

3 Minimum trimmed deviances estimator

In this section we propose the minimum trimmed deviances (MTD) estimator for the
robust estimation of the logistic regression model, which is originally adapted from the
LTS estimator. Instead of summing up all the squared residuals in the ordinary least
squares estimation for a linear regression model, the LTS only considers to include
the first ¢ of the smallest squared residuals in the summation.

Pregibon (1982) shows how the MLE is related to the minimum deviance estima-
tion (MDE) for a logistic regression model. As the log likelihood function is defined

up to an additive constant by I(n,y), the deviance function is defined as:
d(mi;yi) = —=2{1(055 Yi) — Lmax (035 9) },

where m; = 7(n;) = exp(n;)/(1 + exp(n;)), and lyax (7 y;) is the maximum of 1(n;; y;)
with respect to 7;. AS Lyax(7;; ;) is maximized over 7); and is a function of y; alone, it
is constant with respect to 7;. Thus, maximizing L(n;y) of (2) is formally equivalent
to minimizing D(7r;y), and so the MLE, [3, satisfies the minimization of

n
N

>_d(m(zi B):yi). (6)
i=1
Let B, denote the parameters for a specific value of ¢. If Q denotes the subset

with ¢ cases and the corresponding data are denoted by y, and X, then let

day,o < doyo <o <dmyo, (7)

where d(;) denotes the ith-ordered deviance residual and d; o = d(m(x] 8,);y:). In-
stead of adding all the deviance residuals as in (6), we denote the MTD estimator
evaluated at ¢ as:

I%in Z d(i)(ﬂ(w?ﬁq% Yi)- (8)
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The resulting MTD estimator evaluated at ¢ is denoted by Bq, which corresponds to
the MTD estimator based on the subset Q. The corresponding signed square-root
deviance residuals (4) and (5) replace the estimated model (3) by using 7; = :I?Z-TB(I

fori=1,2,...,n.

3.1 The fast algorithm

We rely on the fast algorithm of Rousseeuw and van Driessen (1999) to obtain the
MTD estimate of 3,. The fast algorithm obtains a small subset of the data, and then
the observations of the subset are augmented and updated in such a way that outliers
are unlikely to be included. The basic idea behind the FAST algorithm consists of
carrying out many two-step procedures: a trial step followed by a refinement step
(the so-called Concentration step).

To carry out the fast algorithm for MTD, in the trial step a subsample of size s
is selected randomly from the data and then the model is fitted to that subsample
in order to get a trial ML estimate in this paper. Here, the subsample size, s, can
be any values between p and ¢ - for example, the so-called elemental sets are used in
Rousseeuw and Van Driessen’s papers. The larger the size is of the initial subset, the
higher the probability is of the subset including outliers. Since categorical covariates
often exist in practice and/or the binary response discussed in the subsequent subsec-
tion, a small initial subset may lead to a singular design matrix or a perfect fit. When
either or both situations occur, we use a larger initial subset to avoid computational
failure.

The refinement step is based on the so-called concentration procedure: (a) the
cases with the ¢ smallest deviance residuals based on the current estimate are found,
starting with the trial MLE as initial estimator; (b) fitting the model to these ¢ cases
yields an improved fit. Repeating (a) and (b) leads to an iterative procedure. The
convergence is always guaranteed after a finite number of steps since there are only
a finite many g-subsets out of (Z) (Miiller and Neykov, 2003). The one with the

smallest value of (8) is then an approximate to the solution of MTD.



4 Robust diagnostics for analyzing several 2 x 2
contingency tables

The odds ratio is an important feature extensively used by practitioners in different
applied areas. Breslow (1976) proposes a model for stratified case-control data that
allows a variation of the odds ratio with variables used for stratification. He suggests
using the conditional maximum likelihood estimator to estimate the parameters of
the model. Davis (1985) presents an estimator that is like the conditional maximum
likelihood estimation. It is a generalization of the estimator proposed by Mantel and
Haenszel (1959) for the common odds ratio in a series of 2 x 2 tables whose asymptotic
and small-sample properties have been studied extensively. However, both approaches
based on the maximum likelihood are known to be sensitive to outliers.

Consider a series of K independent 2 x 2 contingency tables, with the data in
the kth table denoted as shown in Table 1. Suppose that each y;;, follows a binomial
distribution with parameters n;, and 7, (j =1, 2; k =1,2,..., K). Let n;;, denote
the total number of observations in the ith treatment and kth center, and let m;
denote the success probability at treatment level z;, in the kth center, where x;;, is the
treatment indicator with x;;, = 1 representing treatment 1 and x;;, = 0 is for treatment
2. Such data arise, for example, from a stratified prospective or retrospective study
of the relationship between a single disease and a single dichotomous risk factor.

Note that for each k, the row sums, ny; and noy, are fixed by design. Let 7y (z 1)
denote the probability that a patient at center k responds to treatment x;,. The data
from a case-control study with a single dichotomous risk factor are often stratified
into 2 x 2 tables using some variables x. In this paper we focus on the following
stratified logit model formulation of the dependence of responses on treatment in
order to assess the homogeneity of odds ratios:

log (%) = oy, + Brxji, (9)
where a4, reflects the stratum effect, and 6, = exp(fi) is the kth stratum treatment-
response odds ratio. The estimation for model (9) has been discussed in Breslow

(1976) and Davis (1985). The common odds ratio model, which assumes 5 = 8 for
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all k, is widely applied to such data as Table 1 (Gart 1971; Breslow and Day 1980;
Hirji et al. (1996); Bagheri et al. (2011)).

4.1 Minimim trimmed maximum-dual deviances estimator

When there are possible outlying tables in the data, we extend the MTD estimator
to obtain the robust estimation for a common odds regression model.

Each strata k or kth 2 x 2 table results in two cases when fitting model (9). One
is for x;;, = 1, and the other for x;;, = 0. Their corresponding deviance residuals are
denoted by dy = d(xj; = 1) and doy, = d(z;, = 0), respectively. Both dox and dyj, are
defined as the square of (4) but with the MTD estimator. It is then unnatural to trim
any one case for the data of this kind when applying the MTD estimator to model
(9). The exclusion of any 2 x 2 table requires excluding two observations at the same
time. Let Q denote the subset with ¢ 2 x 2 contingency tables. We first consider the
maximum of each pair of deviance residuals, denoted by dj o = max(dor,0, dir,0), for

the kth 2 x 2 table, and then order the following deviance residuals:

.0 Sdigo < <dio (10)

which decide the order of each table to contribute to the MTD criterion.
The minimum trimmed maximum-dual deviances (MTMdD) estimator for model

(9) with common odds ratios, 3, is defined by:
q
mﬁmZdZ‘k)’Q. (11)
k=1

where df, denotes the ith-ordered deviance residual of (10). Here, [k/2]+1 < ¢ < K.
The resulting MTMdD estimator evaluated at g is also denoted by 3, for the brevity
of notations. This corresponds to the MTD estimator corresponding to those ¢ tables.

The fast algorithm of section 3.1 is then applied to find the MTMdD estimator,

but the re-sampling scheme is based on K tables rather than 2 x K observations.



5 Real data illustration: Oxford childhood cancer
survey data

This section uses some real data examples in the literature to illustrate the perfor-
mance of the proposed approach. Kneale (1971) and Breslow and Day (1980) consider
data from retrospective studies of the relationship between obstetric radiation and
childhood cancer in the Oxford Childhood Cancer Survey. Cases and controls (cor-
responding to either dying or not dying of childhood cancer, respectively) are each
classified according to whether the mother had been X-rayed during gestation. The
covariates are year of birth and age at death. Tsujitani and Koch (1991) apply part of
this data set to show the residual plots for the log odds ratio regression models. Davis
(1985) compares the Mantel-Haenszel generalization with a conditional or uncondi-
tional maximum likelihood for these data in utero radiation and childhood cancer
incidence, with stratification into 120 categories of age x year of birth (Breslow and
Day, 1980, Appendix II). Breslow and Day (1980, Chapter 6) discuss several kinds of
logistic regression to fit these data.

We herein use the zero degree model shown in Table 6.17 of Breslow and Day
(1980, p. 242), which compares the log relative risk and its interaction with year of
birth, depending on the degree of polynomial adjustment for age and year. Table 2
shows the estimation results using MLE and MTMdD, in which both yield slightly
different conclusions in terms of the values of the estimates and their significance.

Figure 1 shows the deviance residual plots resulting from both approaches, in
which the solid and dashed lines indicate the mother had been X-rayed or not, re-
spectively, for each table. We observe that the solid lines for most tables represent
the maximum of the absolute signed square-root deviance residuals, 7}, for the kth
table. This shows whether the mother having been X-rayed during gestation can have
different impacts on the cases or controls. Hence, it also explains that obstetric radi-
ation is an important factor on childhood cancer. The MTMdD estimator identifies
the last one as an outlying table for these data, where all observations appear inlying

by using MLE. The patterns for both plots are relatively consistent.
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Table 1. Summary of data from the kth 2 x 2 contingency tables

Response
Success (Y =1) Failure (Y =0) Total
Treatment 1 (z1x) Yik N1k — Yik N1k
Treatment 2 () Yok Nak — Yok Nog
Total tr t — Ny N,

Table 2. Estimation results for the Oxford childhood cancer survey data.

MLE MTMdD
Est.  Std Err  p-value Est.  Std Err  p-value
Intercept -0.064 0.020 0.001 -0.049 0.023 0.029
Xrayed 0.511 0.056  <0.001 0.407 0.065 <0.001
Xrayed:Year -0.034 0.014 0.011 -0.060 0.016 <0.001
Res dev 119.35 40.32
df 237 177
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Figure 1: Deviance residual plots for the Oxford childhood cancer survey data: (a)
(a) MLE; (b) MTMdD.
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On the Hotelling T2 control chart for the vector autoregressive process

T.-C. Cheng, P.-H. Hsieh, S.-F. Yan§
'Department of Statistics, National Chengchi Universityp@ia Taiwan
2College of Business, Oregon State University, Corvalligon, USA
(chengt@nccu.edu.tw, Ping-Hung.Hsieh@bus.oregonstatgaiy@nccu.edu.tw)

Abstract - A vector autoregressive (VAR) model has A. AVAR model
become a popular multivariate monitoring technique for Denote thek variables of a vector autoregressive

serially correlated observations often observed ipractice. — . . .
. ; i X rocess y, = in ak-dimensional vector
In this article, we examine, via a Monte Carlo appoach, the P Yi {ylt Yoo 'ykt}

effect of a shift in the model parameter and the saple size  Of response variables. The vector autoregressive (VAR)
in both Phase | and Phase Il schemes on control clta  model with ordep is defined as follows:

statistics, namely, different versions of Hotellingg T2 when =+ (O.L+D |_2 +ooe+ @ LP +£ 1
a VAR model is employed. The effects are reportednd Yo = H+ (P 2 P Yo +é (1)

specific T? statistics under various sample sizes is whereL is the lag operatorf, ={f4, ly,..., 14} is the
recommended. .

mean vector, and&, ={&;,Ey,....E} IS a k-

Keywords - Hotelling's T ?statistic, vector autoregressive

- > dimensional vector of the error term. Ea@h is an
process, statistical quality control !

kxk coefficient matrix for thgth lag, j=1,...p. & is
uncorrelated about time but correlated cross-sectiaonally

That is, E(£,£,) = Q is invariant about time but may

Several models have been proposed to accommodate . . .
the interdependence of quality characteristics caltbct not be a diagonak x k matrix. .Th.e e_rror t(?rmft, 1S
from a multivariate process system, see for example, #hen assumed as a normal distribution with the mean
state space model by [1] and [2], a Bayesian multivariatevector 0 and covariance matrf2 .
local level model by [3], and a multivariate dynamic ~ ~ .
linear model by [4]. Because of its flexibility in tdiimg Denote // and q)i as the OLS estimates g and
serial correlated data, a vector autoregressive (VAR @, respectively, and the estimated systematic model is
model has been drawing attention (see, for example, [SJj .

o o efined as

and [6]). By filtering the multivariate process system - “ ~ n
with a VAR model, one could then monitor the model ¥; =+ (®P,L +P,L° +---+ D L°)y,, t=1,..N,
residuals as a serially independent multivariate serieSyhere N is the number of observations in the Phase |
Subsequently, a typical chart statistics, such as Hug&li  goheme. Théh residual is then

TZ]_can be plotted to monitor a certain level of preces e=Vy, - Y. t=1,...N.

quality. _ _ _
Although the use of VAR models is gaining its The covariance o, is estimated by

popularity, an important research question concerning the -

N
= ' . 2
variation of the resultingjl'2 during Phase | of control 2 IZ::le‘e‘ /N )

charting and Phase Il of process monitoring requires |f the process is in-control and model (1) is adequate

f“”h.ef investigation. .TW_O major _contrlbutlng factors are and well estimated, the residuagsshould also be an
considered in this article: a shift in the model paramete

and the Samp|e size. [6] examined theoretica”y theeffe asymptotically i.i.d. normal distribution with zero means.

of a change in the model parameter &f and point out  The traditional HotellingT ?chart can be applied tq,.
the VAR residuals are only asymptotically independently
and identically distributed (i.i.d.). Hence, without a L
sufficiently large sample size, the control limits Statisticis

established in Phase | may have unintended Type | error th = QQIlQ, )
rate, which in turn, lead to undesirable Type Il erroe rat o _

in Phase II. See [7] for a discussion on the increageeof t that follows a Y distribution withk degrees of freedom.
false alarm rate in a multivariate autocorrelation psece There are two issues about (2) that require further
We examine and verify this issue in the simulation study

I. INTRODUCTION

For observationsy, in Phase Il, [6] showed that the chart

verification. First of all,Q, is a biased estimator fdn .

II. METHODOLOGY To obtain an unbiased estimate &f , one needs to
correct it by a penalty factor on (2) as follows (s8¢



~ N , A. Smulation design
Qz = ZQQ /(N - kp—l). Any shift on one or more of the three parametgrs,

t=1

“ “ CD]- 's, andQ , may change the distributions of the chart
The use of Q, rather Q, is due to the fact that

statistic and induce out of control signals. To verify the

L 2 . . . .
Hotelling's T “ in (3) relies on the likelihood and large performance ofT 2 on monitoring a VAR process, We

sample principles. On the other hand, small sample siz&g)ioy the simulation design in [6]. A tri-variate VAR(3)
occur frequently in practice, often distorting the false podel is generated with the mean vector

alarm rate in Phase |, and subsequently, the power ir}l‘ =11 21 1.1),and the covariance matrix of the

Phase II. Therefore, we considem -1)/(N ~K)Fn-ka error term and the coefficient matrices are defined as

as an alternative critical value t§°in (3), where follows:
Fe n-k.o denotes arr distribution with the degrees of

freedomsk andN-k, anda is the level of significance [9] L 05 -15 05 02 -00§
» ande g " Q=| 05 425 025|'®,=[-01 07 02
B. Satistical quality issuesin a VAR process -15 025 299 | 025 -022 054 |
Th.ere are three classes of parameters in a VAR _025 023 -oi] f 021 -01 -013
model: the process mean, the covariance matrix of error :
term, and the autoregressive coefficients of the m¢elel. P, =|-034 032 012 ®;=|-009 -032 -021)
showed that the effect of a parameter shift dependbeon t 043 -018 015 | 015 005 048 |

magnitude of the shift as well as the resulting estichate

parameter values. However, their discussion assumes thg,q change of mean imposes a multiplier, 1.1, 1.2, or 1.3

control limits are correctly established in Phased the ¢ .o mean vector above. The shift of covariancairmat
uncertainty in parameter estimation due to a small samplggeg g multiplier 1.05, 1.1 and 1.2. The change of
size is not accounted for. [5] showed that the falaera '

rate may change according to the value€Dfin their in- cDi focus on varying®, . That is

control VAR(1) simulation study. [6] also pointed out 0.5 0.2 - 0.08
that the VAR residuals are pnly asymptotically i.i.d. ®=|-01 0.7 02+c¢
Therefore, to use the convenient Type | error way of

setting up control limits for the VAR chart, one ne¢als 025 -022 0.54

have the Phase | sample size large enough in order wherec=0.2, 0.1, -0.1, -0.2, and -0.3.

guarantee the serial independence of the residuals. Apart from examining the shift in the model
However, no conclusion has been drawn with regard tgarameters, the simulation design considers thecisfiof

the appropriate sample size. [4] used 100 observations tarious model configurations, specifically, the ren of
establish their Phase | control chart, but only the ghan variables or seriesk), the number of orderp), and

of @ in the bivariate VAR(1) model was considered. Oursample sizeN). For the Phase | scheme, the sample size,

simulation will provide more insight into this issue. N,, of each data set is assigned to be 50, 100, &0,

As discussed in the previous section, the following ) . )
) 2 ) . 500. While the sample size for Phasel,, is 20% or
Hotelling T “'s and the corresponding control limits are

considered in the study: 40% of N;.

2 _a'Olas y2
Tic e‘g}l &= Xica @ B. Smulation results
T2 =eQjle> )7 (5) TABLE | shows the in-control ARL values undée

¢ v Phase | scheme, indicating the occurrences of &éisens

T2 = Q‘f)—let> k(N -1) ©) in 20,000 replications. Since the expected ARB8, it

ol R N is obvious thafl,2 outperforms the other three methods
TL = q§;1q>m Fonoca (7) o matter what the sample siz, , is. It expects that the

-~ N-k "7

sample size increases, the ARL values for all otheze
Given 0=0.0027, theT ? control chart schemes yield an methods T2 . T.2 . andT.2 will converge to that off,2
. K *I2F 0 T1F 2c 1c
overall in-control ARL of approximately 370. Both
Phases | and Il employ 20,000 replicates to calculate th
ARL criterion.

with various converging speeds. The table also shbat

the sample size required in Phase | to achieve the

theoretical ARL is rather large, and one should be

cautious when a more complicated model is employed.
TABLE 1l presents the out-of-control ARL resul

under Phase Il scheme for a VAR(3) model. “Nomne" i

the table denotes the in-control case, which means

[ll. RESULTS



change in any parameter in the Phase Il schemeaderUn
this case T~
yield a reasonable performance for small sampke (siay

appears supreme even although it does not

TZ >T2>TZ2 >T?2 in TABLE Il. The deviation of

ARL values among thesd 2 's keeps in the right
direction as the shift of the parameters, thathis,larger

N, <100) under Phase | scheme. The ARL values Sho‘%e change is, the smaller the valueTdf is. Although

T2 >T2>T2 >T2 inTABLE Il.

The change of mean vector results in quitesistent
departure of alll 2's in terms of ARL. Under the same
N, for Phase | and\, for Phase Il, the comparison of
ARL values of these four methods Vyields
T2 >T2 >T2 >T7Z for different kinds of change of

only one elementc, is changed in®, for a VAR(3)
model, the resulting ARL values are very differexst
shown in TABLE I. The ARL values yielded bIézF are

the closest to the simulated out-of-control ARL ued
(see TABLE ).

IV. DISCUSSION

M in the same model. The ARL values are quite close

under the samd@ % no matter what sample size is in the
Phase Il scheme. For a givé'nz, the ARL values
increase as the sample sidd,, in the Phase | increases;
however, the ARL values remain similar irrespectofe
the sample sizeNz, in Phase II.

The smaller out-of-control ARL values shoube
expected when there exists a shift on any paranfreter
the process. Nevertheless, we may suspect thatRhe

values are too small for somE?'s in TABLE II. In
other words, the power of the test statistic isrestated.

To evaluate the accuracy dt? in (4)-(7), simulated
ARL values for all configurations using large saesphre
carried out in TABLE IIl for a VAR(3) model. The
values in TABLE Ill are obtained by using 10000 adat
points for Phase | and another 10000 observations f
Phase Il. The same settings for parameters aréogetp
as discussed in the simulation design section. n\ie
look at each row in TABLE IIl, all the ARL valuesea
quite similar in the same configuration no matteraw

T?'s are used. It concludes that all versiond f have
an equal performance when large samples are applied
both Phase | and Il schemes.

To compare the values in TABLE | and TABLE

T22F is the one fast approaching to the simulated in
control ARL values in both Phase | and Phase Ilésws.

The Tli suggested by [6] leads to the smallest values

among allT ?'s in TABLE | and it is very sensitive to the
change, which results in an increase in the fdtsgnarate
in Phase Il. This phenomenon is also present @& th

In summary, allT?'s defined in (4) to (7) are
sensitive to the change of parameters and sanza@s. s
the sample size in Phase | increases, the ARL salue
decrease (and converge to the expected ARL vatugllf
simulation cases under the same conditions. Gilen
same sample size in Phase |, the in-control ARluesl
remain quite similar regardless of the sample sires
Phase II. Although we only consider the changera
parameter at a time, the effect of a parametet siif
ARL is already apparent. One can induce that
simultaneous change of the parameters will leachdoe
significant results.

V. CONCLUSION

We verify, via a Monte Carlo approach, the effeasfts

a parameter shift and sample size on Thi statistics
when a VAR model is employed. Both the sample size

and the critical value for the Hotellin'@2 statistic for
Phase | scheme are confirmed to achieve a reasonabl
average run length, leading to a reasonable PHhase |

monitoring chart. Our suggestion is to USgand X

distribution for the HotellingTzstatistic under Phase |
scheme when sample size is not large, while tremoi

difference in using (4)-(7) for larger sampl@2 andF

distribution are suggested to be applied undePtrese 11
scheme.
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TABLE 1l
OUT-OF-CONTROL ARLs OF PHASE | SCHEME FOR A VAR(3) MODE
Shift N,
40% N, 20% N,
2 2 2 2
I\|1 TZC Tlc T22F T1l2: TZC Tlc T22F T1|2:
None 50 33.02 15.76 64.99 27.56 33.23 15.91 66.89 27.82
100 108.30 65.64 173.12 98.29 110.10 66.05 176.29 99.70
250 232.56 181.97 287.77 223.49 232.29 181.98 287.03 222.62
500 293.28 257.58 327.33 288.06 291.72 256.11 323.83 286.20
1.1p 50 22.97 11.73 42.27 19.54 23.05 11.76 42.03 19.61
100 70.97 44.30 107.12 64.72 70.09 44.02 105.15 63.93
250 149.11 119.15 182.00 143.93 148.15 118.29 179.86 142.98
500 189.96 168.46 210.33 186.50 190.51 168.95 211.28 186.93
1.2p 50 11.85 6.80 19.91 10.31 11.82 6.77 19.89 10.28
100 31.60 21.21 45.46 29.16 31.58 21.16 45.40 29.10
250 59.46 49.30 70.42 57.67 59.49 49.41 70.71 57.64
500 74.83 67.63 81.78 73.70 75.13 67.87 82.18 73.98
1.3 50 6.23 4.00 9.48 5.58 6.25 4.02 9.52 5.59
100 13.30 9.63 17.85 12.52 13.40 9.67 17.92 12.60
250 23.18 19.73 26.65 22.58 23.28 19.78 26.76 22.69
500 28.50 26.16 30.71 28.13 28.48 26.18 30.69 28.13
1.05Q 50 27.94 13.64 53.50 23.49 28.28 13.82 54.36 23.72
100 86.96 53.69 134.98 79.59 87.72 54,14 137.69 80.06
250 171.03 136.18 209.03 164.88 172.38 137.63 211.42 166.22
500 217.60 193.69 241.79 21394 217.39 193.44 241.84 213.70
1.10 50 24.50 12.31 45.73 20.74 24.41 12.39 45.00 20.68
100 69.91 44.06 106.02 63.96 70.25 44,16 107.90 64.21
250 134.07 107.96 162.04 129.16 134.26 108.90 162.28 129.58
500 165.71 147.35 183.37 162.77 164.95 147.03 182.78 162.11




TABLE Il (continued)

1.20 50 18.85 9.89 33.56 16.08 18.94 9.95 33.47 16.13
100 47.70 31.17 69.41 4398 48.30 31.55 70.21 44.57
250 86.03 70.10 | 102.62 83.29 86.13 69.72 | 103.08 83.09
500 | 101.97 92.03 | 111.85| 100.32 | 101.97 92.01 | 111.79 | 100.35
®; 50 5.65 3.72 8.30 5.09 5.71 3.75 8.40 5.14
-0.2 100 11.71 8.66 15.41 11.05 11.68 8.66 15.37 11.01
250 19.38 16.76 22.04 18.95 19.42 16.80 22.10 19.00
500 23.12 21.38 24.74 22.84 23.16 21.43 24.78 22.89
0.1 50 15.15 8.31 26.33 13.05 15.24 8.37 26.50 13.16
100 42.58 27.69 62.07 39.26 42.25 27.45 61.56 38.94
250 80.99 66.03 96.58 78.47 81.56 66.28 97.38 78.86
500 | 102.32 91.90 | 112.64 | 100.60 | 102.66 92.03 | 112.76 | 100.93
50 11.60 6.81 19.08 10.17 11.53 6.80 18.97 10.09
0.1 100 31.73 21.40 45.06 29.37 31.13 21.09 44.21 28.86
250 60.50 50.07 71.27 58.63 60.65 50.30 71.55 58.78
500 74.34 67.02 81.13 73.23 74.25 66.96 81.03 73.18
0.2 50 2.96 2.23 3.90 2.76 2.98 2.24 3.91 2.77
100 4.87 3.93 5.91 4.67 4.88 3.93 5.91 4.68
250 7.06 6.33 7.78 6.94 7.06 6.33 7.78 6.94
500 8.12 7.65 8.54 8.04 8.15 7.68 8.57 8.07
0.3 50 1.39 1.25 1.56 1.35 1.39 1.25 1.56 1.36
100 1.61 1.48 1.74 1.58 1.61 1.48 1.74 1.58
250 1.81 1.73 1.88 1.79 1.80 1.73 1.88 1.79
500 1.89 1.84 1.93 1.88 1.89 1.84 1.93 1.88
TABLE 1l
SIMULATED ARL VALUES FOR A VAR(3) MODEL
-Ti 11§ T;i 11i
Phase | 357.143 | 344.828 | 357.143 | 344.828
Phase Il

None | 277.778 | 277.778 | 277.778 | 277.778

1.1p| 212.766 | 212.766 | 217.391 | 212.766

1.2p 84.034 | 84.034| 84.034 84.034

13u 28.490 | 28.490 | 28571 28.490

1.05Q | 285.714 | 277.778 | 285.714 | 285.714

1.10 | 163.934 | 163.934 | 166.667 | 163.934

12Q | 116.279 | 116.279 | 119.048 | 116.279

®, -02 23.753 | 23.641| 23.810 23.753

0.1 95.238 | 94.340 | 96.154 95.238

0.1 76.923 | 76.336 | 76.923 76.923

0.2 8.097 8.078 8.117 8.097

0.3 1.868 1.867 1.870 1.868
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We propose two kinds of robust estimators to provide resistant results for
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analyzing the logistic regression model. The proposed approaches are able to deal
with binary responses and categorical covariates. One of these estimators can
also be used to identify outlying cells for several

2x2 contingency tables, which contribute some insights to the related strand in
the literature. The real data examples implementing the proposed approaches yield

some new findings.

The current study can be extended to the K 2xJ tables for the analysis of
case-control studies with the exposure measured at several levels, and considers

model misspecification for the proportional odds regression model.




