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中 文 摘 要 ： 吾人在本計畫中提出對邏輯斯迴歸模型的最小削減偏差

（minimum trimmed deviances ，MTD)穩健估計方法。另外

針對共同勝算迴歸模型又提出最小削減最大成對偏差

（minimum trimmed maximum-dual deviances ，MTMdD)估計

方法，此為對 MTD 的一個延伸，藉此可以偵測數個２×２列聯

表分析時其可能的離群值。 

中文關鍵詞： ２×２列聯表、邏輯斯迴歸模型、最小削減偏差估計 

英 文 摘 要 ：  
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Robust diagnostics for analyzing several 2× 2
contingency tables

Tsung-Chi Cheng∗

Abstract

We propose a minimum trimmed deviances (MTD) estimator for the robust
estimation of the logistic regression model. An adoption of MTD, called the
minimum trimmed maximum-dual deviances (MTMdD) estimator, is applied
to estimate the common odds regression model and hence to identify outlying
tables when some possible outliers exist among several 2×2 contingency tables.
We will illustrate the methods by analyzing a real data example in the literature.

KEY WORDS: 2 × 2 contingency tables; logistic regression model; minimum
trimmed deviances estimator; Robust diagnostics

1 Introduction

The logistic regression model is one of the most powerful tools in data analysis for

medical and epidemiologic studies. The maximum likelihood estimation (MLE) is

the popular approach to calculate the coefficient estimation for a logistic regression

model, but it is sensitive to outlying responses and extreme points in the design

matrix. Outliers in the design matrix are called leverage points or influential points

in the regression literature. Both types of outliers can spoil the maximum likelihood

fit for a logistic regression analysis. However, such outlying observations are hard to

identify, because they do not always show up in the usual residual plots.

In the context of categorical variables for the contingency tables, outliers have not

been studied frequently. Outlier identification and accommodation in contingency

tables have been discussed by Kotze and Hawkins (1984), Simonoff (1988), and Yick
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and Lee (1998), with these works focusing on the identification of outliers in a single

contingency table. In practice, there exist multiple 2 × 2 contingency tables to be

analyzed. One of the principal advantages of using the logistic regression model is

that it encourages a quantitative description of how changes in risk associated with

one factor are modified by the interaction effects of other risk or nuisance variables.

A generalization of the Mantel-Haenszel estimator to non-constant odds ratios was

proposed by Davis (1985) as an alternative to the conditional maximum likelihood

for fitting log odds ratio regression models to sets of sparse 2 × 2 tables such as

those that arise in case-control studies (Breslow, 1976; Breslow and Cologne, 1986).

The presence of interaction effects in a series of 2 × 2 contingency tables depends

systematically on the variables used for strata formation. Hence, a model is considered

for this purpose, in which the log relative risk is assumed to change linearly over a

strata.

In this project we first propose a minimum trimmed deviances (MTD) estimator

for the robust estimation of the logistic regression model, which is inspired by the

least trimmed squares (LTS) technique. An adoption of MTD, called the minimum

trimmed maximum-dual deviances (MTMdD) estimator, is then used to estimate the

common odds regression model and hence to identify outlying tables for the analysis of

several 2× 2 contingency tables. The fast algorithm is adapted to find both resulting

estimators. The proposed procedure is illustrated by using real data analysis.

2 The logistic regression model

Let there be n binomial observations of the form yi/mi, i = 1, 2, . . . , n, where E(yi) =

miπi, and πi is the success probability corresponding to the ith observation. The

binomial distribution for a fixed number of trials is determined by the probability π

of success. Both the mean and the variance depend only on πi and the known number

mi of trials.

For each yi we know the number of trials mi, and in addition there is an associated

vector of p + 1 predictors xi. Assuming that the probability of success depends on
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xi, then the probability function of yi can be written as:

πi = P (yi = 1) = f(x;β)

=
exp(xT

i β)

1 + exp(xT
i β)

, i = 1, 2, . . . , n, (1)

where β = (β0, β1, . . . , βp) is a (p + 1) × 1 unknown parameters vector. Note that

0 ≤ πi ≤ 1 for all values of β and xi. The log odds ratio is:

log
(

πi

1− πi

)
= xT

i β,

which is linear in the parameters β. The logistic regression may be viewed as a

non-linear model with heterosceddastic errors - that is:

yi = xT
i β + ϵi, ϵi ∼ bin(mi, πi),

where E(ϵi) = miπi and Var(ϵi) = miπi(1 − πi). These parameters are readily es-

timated using the method of MLE (see McCullagh and Nelder (1989) for details),

which is given by maximizing

L(η;y) =
n∑

i=1

l(π(xT
i β); yi), (2)

where ηi = xT
i β and l(π(xT

i β); yi) denotes the log likelihood for the ith case.

Once the estimator of β is obtained, denoted by β̂, the estimated value of the

model is:

η̂i = xT
i β̂. (3)

The fitted probabilities π̂i can now be found using π̂i = exp(η̂i)/[1 + exp(η̂i)]. In the

logistic regression there are several possible ways to measure the difference between

the observed and the fitted values. One of them is the signed square-root deviance

residual, which is defined as:

ri = sign(yi − ŷi)

√√√√2yi log

(
yi
ŷi

)
+ 2(mi − yi) log

(
mi − yi
mi − ŷi

)
, (4)

where “sign” denotes the sign of (yi − ŷi). When the response is binary, the signed

square-root deviance residual becomes:

ri = sign(yi − π̂i)
√
−2[yilogπ̂i + (1− yi)log(1− π̂i)]. (5)
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The deviance residual provides information about how well the model fits each par-

ticular observation (see Hilbe, 2009).

3 Minimum trimmed deviances estimator

In this section we propose the minimum trimmed deviances (MTD) estimator for the

robust estimation of the logistic regression model, which is originally adapted from the

LTS estimator. Instead of summing up all the squared residuals in the ordinary least

squares estimation for a linear regression model, the LTS only considers to include

the first q of the smallest squared residuals in the summation.

Pregibon (1982) shows how the MLE is related to the minimum deviance estima-

tion (MDE) for a logistic regression model. As the log likelihood function is defined

up to an additive constant by l(η, y), the deviance function is defined as:

d(πi; yi) = −2{l(ηi; yi)− lmax(ηi; yi)},

where πi = π(ηi) = exp(ηi)/(1 + exp(ηi)), and lmax(ηi; yi) is the maximum of l(ηi; yi)

with respect to ηi. As lmax(ηi; yi) is maximized over ηi and is a function of yi alone, it

is constant with respect to ηi. Thus, maximizing L(η;y) of (2) is formally equivalent

to minimizing D(π;y), and so the MLE, β̂, satisfies the minimization of

n∑
i=1

d(π(xT
i β̂); yi). (6)

Let βq denote the parameters for a specific value of q. If Q denotes the subset

with q cases and the corresponding data are denoted by yq and Xq, then let

d(1),Q ≤ d(2),Q ≤ · · · ≤ d(n),Q, (7)

where d(i) denotes the ith-ordered deviance residual and di,Q = d(π(xT
i βq); yi). In-

stead of adding all the deviance residuals as in (6), we denote the MTD estimator

evaluated at q as:

min
βq

∑
i∈Q

d(i)(π(x
T
i βq); yi). (8)
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The resulting MTD estimator evaluated at q is denoted by β̂q, which corresponds to

the MTD estimator based on the subset Q. The corresponding signed square-root

deviance residuals (4) and (5) replace the estimated model (3) by using η̂i = xT
i β̂q

for i = 1, 2, . . . , n.

3.1 The fast algorithm

We rely on the fast algorithm of Rousseeuw and van Driessen (1999) to obtain the

MTD estimate of βq. The fast algorithm obtains a small subset of the data, and then

the observations of the subset are augmented and updated in such a way that outliers

are unlikely to be included. The basic idea behind the FAST algorithm consists of

carrying out many two-step procedures: a trial step followed by a refinement step

(the so-called Concentration step).

To carry out the fast algorithm for MTD, in the trial step a subsample of size s

is selected randomly from the data and then the model is fitted to that subsample

in order to get a trial ML estimate in this paper. Here, the subsample size, s, can

be any values between p and q - for example, the so-called elemental sets are used in

Rousseeuw and Van Driessen’s papers. The larger the size is of the initial subset, the

higher the probability is of the subset including outliers. Since categorical covariates

often exist in practice and/or the binary response discussed in the subsequent subsec-

tion, a small initial subset may lead to a singular design matrix or a perfect fit. When

either or both situations occur, we use a larger initial subset to avoid computational

failure.

The refinement step is based on the so-called concentration procedure: (a) the

cases with the q smallest deviance residuals based on the current estimate are found,

starting with the trial MLE as initial estimator; (b) fitting the model to these q cases

yields an improved fit. Repeating (a) and (b) leads to an iterative procedure. The

convergence is always guaranteed after a finite number of steps since there are only

a finite many q-subsets out of
(
n
q

)
(Müller and Neykov, 2003). The one with the

smallest value of (8) is then an approximate to the solution of MTD.
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4 Robust diagnostics for analyzing several 2 × 2

contingency tables

The odds ratio is an important feature extensively used by practitioners in different

applied areas. Breslow (1976) proposes a model for stratified case-control data that

allows a variation of the odds ratio with variables used for stratification. He suggests

using the conditional maximum likelihood estimator to estimate the parameters of

the model. Davis (1985) presents an estimator that is like the conditional maximum

likelihood estimation. It is a generalization of the estimator proposed by Mantel and

Haenszel (1959) for the common odds ratio in a series of 2×2 tables whose asymptotic

and small-sample properties have been studied extensively. However, both approaches

based on the maximum likelihood are known to be sensitive to outliers.

Consider a series of K independent 2 × 2 contingency tables, with the data in

the kth table denoted as shown in Table 1. Suppose that each yjk follows a binomial

distribution with parameters njk and πjk (j = 1, 2; k = 1, 2, . . . , K). Let njk denote

the total number of observations in the ith treatment and kth center, and let πjk

denote the success probability at treatment level xjk in the kth center, where xjk is the

treatment indicator with xjk = 1 representing treatment 1 and xjk = 0 is for treatment

2. Such data arise, for example, from a stratified prospective or retrospective study

of the relationship between a single disease and a single dichotomous risk factor.

Note that for each k, the row sums, n1k and n2k, are fixed by design. Let πk(xjk)

denote the probability that a patient at center k responds to treatment xjk. The data

from a case-control study with a single dichotomous risk factor are often stratified

into 2 × 2 tables using some variables x. In this paper we focus on the following

stratified logit model formulation of the dependence of responses on treatment in

order to assess the homogeneity of odds ratios:

log

(
πk(xjk)

1− πk(xjk)

)
= αk + βkxjk, (9)

where αk reflects the stratum effect, and θk = exp(βk) is the kth stratum treatment-

response odds ratio. The estimation for model (9) has been discussed in Breslow

(1976) and Davis (1985). The common odds ratio model, which assumes βk = β for
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all k, is widely applied to such data as Table 1 (Gart 1971; Breslow and Day 1980;

Hirji et al. (1996); Bagheri et al. (2011)).

4.1 Minimim trimmed maximum-dual deviances estimator

When there are possible outlying tables in the data, we extend the MTD estimator

to obtain the robust estimation for a common odds regression model.

Each strata k or kth 2× 2 table results in two cases when fitting model (9). One

is for xjk = 1, and the other for xjk = 0. Their corresponding deviance residuals are

denoted by d1k = d(xjk = 1) and d0k = d(xjk = 0), respectively. Both d0k and d1k are

defined as the square of (4) but with the MTD estimator. It is then unnatural to trim

any one case for the data of this kind when applying the MTD estimator to model

(9). The exclusion of any 2× 2 table requires excluding two observations at the same

time. Let Q denote the subset with q 2× 2 contingency tables. We first consider the

maximum of each pair of deviance residuals, denoted by d∗k,Q = max(d0k,Q, d1k,Q), for

the kth 2× 2 table, and then order the following deviance residuals:

d∗(1),Q ≤ d∗(2),Q ≤ · · · ≤ d∗(K),Q, (10)

which decide the order of each table to contribute to the MTD criterion.

The minimum trimmed maximum-dual deviances (MTMdD) estimator for model

(9) with common odds ratios, β, is defined by:

min
β

q∑
k=1

d∗(k),Q. (11)

where d∗(k) denotes the ith-ordered deviance residual of (10). Here, [k/2]+1 ≤ q ≤ K.

The resulting MTMdD estimator evaluated at q is also denoted by β̂q for the brevity

of notations. This corresponds to the MTD estimator corresponding to those q tables.

The fast algorithm of section 3.1 is then applied to find the MTMdD estimator,

but the re-sampling scheme is based on K tables rather than 2×K observations.

7



5 Real data illustration: Oxford childhood cancer

survey data

This section uses some real data examples in the literature to illustrate the perfor-

mance of the proposed approach. Kneale (1971) and Breslow and Day (1980) consider

data from retrospective studies of the relationship between obstetric radiation and

childhood cancer in the Oxford Childhood Cancer Survey. Cases and controls (cor-

responding to either dying or not dying of childhood cancer, respectively) are each

classified according to whether the mother had been X-rayed during gestation. The

covariates are year of birth and age at death. Tsujitani and Koch (1991) apply part of

this data set to show the residual plots for the log odds ratio regression models. Davis

(1985) compares the Mantel-Haenszel generalization with a conditional or uncondi-

tional maximum likelihood for these data in utero radiation and childhood cancer

incidence, with stratification into 120 categories of age × year of birth (Breslow and

Day, 1980, Appendix II). Breslow and Day (1980, Chapter 6) discuss several kinds of

logistic regression to fit these data.

We herein use the zero degree model shown in Table 6.17 of Breslow and Day

(1980, p. 242), which compares the log relative risk and its interaction with year of

birth, depending on the degree of polynomial adjustment for age and year. Table 2

shows the estimation results using MLE and MTMdD, in which both yield slightly

different conclusions in terms of the values of the estimates and their significance.

Figure 1 shows the deviance residual plots resulting from both approaches, in

which the solid and dashed lines indicate the mother had been X-rayed or not, re-

spectively, for each table. We observe that the solid lines for most tables represent

the maximum of the absolute signed square-root deviance residuals, r∗k, for the kth

table. This shows whether the mother having been X-rayed during gestation can have

different impacts on the cases or controls. Hence, it also explains that obstetric radi-

ation is an important factor on childhood cancer. The MTMdD estimator identifies

the last one as an outlying table for these data, where all observations appear inlying

by using MLE. The patterns for both plots are relatively consistent.
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Table 1. Summary of data from the kth 2× 2 contingency tables

Response
Success (Y = 1) Failure (Y = 0) Total

Treatment 1 (x1k) y1k n1k − y1k n1k

Treatment 2 (x2k) y2k n2k − y2k n2k

Total tk tk − nk nk

Table 2. Estimation results for the Oxford childhood cancer survey data.

MLE MTMdD
Est. Std Err p-value Est. Std Err p-value

Intercept -0.064 0.020 0.001 -0.049 0.023 0.029
Xrayed 0.511 0.056 <0.001 0.407 0.065 <0.001
Xrayed:Year -0.034 0.014 0.011 -0.060 0.016 <0.001
Res dev 119.35 40.32
df 237 177
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Figure 1: Deviance residual plots for the Oxford childhood cancer survey data: (a)
(a) MLE; (b) MTMdD.
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場次的主持人。與會期間並出席其他場次論文發表，收獲甚多。 

會議期間與其他國家學者多有交誼，其中與會議主辦者來自香港城市大學的謝旻教授幾

次討論，得以知道此會議之特色，與舉辦會議之辛苦。 

 

 

二、與會心得 

本次大會參加者因地緣關係，甚多來自亞洲國家；且其因會議性質與主題，來自產官學

界之身分者皆有。就各方面而言，此次的與會有相當大的收穫。在個人研究方面，此行

與幾位學者的接觸，與聆聽演講，都引發一些未來可能的研究主題與方向。 

由前述與謝教授之交談得知，此會議每兩年由亞洲國家輪流舉行，以國內在此一相關主

題的研究成果及能量，若能爭取此會議之主辯，應是大有機會。 

 

 

 

 

 

 

 

 

 

 

 



     Abstract - A vector autoregressive (VAR) model has 
become a popular multivariate monitoring technique for 
serially correlated observations often observed in practice.  
In this article, we examine, via a Monte Carlo approach, the 
effect of a shift in the model parameter and the sample size 
in both Phase I and Phase II schemes on control chart 
statistics, namely, different versions of Hotelling’s 2T  when 
a VAR model is employed.  The effects are reported and 
specific 2T  statistics under various sample sizes is 
recommended.   

 
Keywords - Hotelling's 2T statistic, vector autoregressive 

process, statistical quality control 
  
 

I.  INTRODUCTION 
 
   Several models have been proposed to accommodate 
the interdependence of quality characteristics collected 
from a multivariate process system, see for example, a 
state space model by [1] and [2], a Bayesian multivariate 
local level model by [3], and a multivariate dynamic 
linear model by [4].  Because of its flexibility in handling 
serial correlated data, a vector autoregressive (VAR) 
model has been drawing attention (see, for example, [5] 
and [6]).  By filtering the multivariate process system 
with a VAR model, one could then monitor the model 
residuals as a serially independent multivariate series.  
Subsequently, a typical chart statistics, such as Hotelling's 

2T , can be plotted to monitor a certain level of process 
quality. 
      Although the use of VAR models is gaining its 
popularity, an important research question concerning the 

variation of the resulting 2T  during Phase I of control 
charting and Phase II of process monitoring requires 
further investigation.  Two major contributing factors are 
considered in this article: a shift in the model parameter 
and the sample size.  [6] examined theoretically the effect 

of a change in the model parameter on  2T  and point out 
the VAR  residuals are only asymptotically independently 
and identically distributed (i.i.d.).  Hence, without a 
sufficiently large sample size, the control limits 
established in Phase I may have unintended Type I error 
rate, which in turn, lead to undesirable Type II error rate 
in Phase II.  See [7] for a discussion on the increase of the 
false alarm rate in a multivariate autocorrelation process.  
We examine and verify this issue in the simulation study. 
 

II.  METHODOLOGY 
 

A.  A VAR model 
Denote the k variables of a vector autoregressive 

process  },...,,{ 21 ktttt yyyy =  in a k-dimensional vector 

of response variables. The vector autoregressive (VAR) 
model with order p is defined as follows: 

 tt
p

pt yLLLy εµ +Φ++Φ+Φ+= )( 2
21 L         (1) 

where L is the lag operator, },...,,{ 21 kt µµµµ =  is the 

mean vector, and },...,,{ 21 ktttt εεεε =  is a k-

dimensional vector of the error term.  Each jΦ  is an 

kk ×  coefficient matrix for the jth lag, j=1,…,p.  tε is 

uncorrelated about time but correlated cross-sectionally. 

That is, Ω=)( '
ttE εε  is invariant about time but may 

not be a diagonal kk ×  matrix.  The error term, tε , is 

then assumed as a normal distribution with the mean 
vector 0 and covariance matrix Ω . 

Denote µ̂ and jΦ̂ as the OLS estimates of µ and 

jΦ , respectively, and the estimated systematic model is 

defined as   

t
p

pt yLLLy )ˆˆˆ(ˆˆ 2
21 Φ++Φ+Φ+= Lµ ,   t=1,…,N , 

where N is the number of observations in the Phase I 
scheme.  The tth residual is then 

    ttt yye ˆ−= ,        t=1,…,N. 

The covariance of tε is estimated by 

        Nee
N

t
tt /ˆ

1

'
1 ∑

=

=Ω .                                                 (2) 

If the process is in-control and model (1) is adequate 

and well estimated, the residuals te should also be an 

asymptotically i.i.d. normal distribution with zero means.  

The traditional Hotelling 2T chart can be applied to te .  

For observations ty in Phase II, [6] showed that the chart 

statistic is 

     ttt eeT 1
1

'2 ˆ −Ω= ,                                                    (3) 

that follows a 2χ distribution with k degrees of freedom. 
There are two issues about (2) that require further 

verification. First of all, 1Ω̂ is a biased estimator for Ω .  

To obtain an unbiased estimate of Ω , one needs to 
correct it by a penalty factor on (2) as follows (see [8]): 

On the Hotelling 2T  control chart for the vector autoregressive process 
 

T.-C. Cheng1, P.-H. Hsieh2, S.-F. Yang1 

1Department of Statistics, National Chengchi University, Taipei, Taiwan 
2College of Business, Oregon State University, Corvallis, Oregon, USA 

(chengt@nccu.edu.tw, Ping-Hung.Hsieh@bus.oregonstate.edu, yang@nccu.edu.tw) 
 
 



 

)1/(ˆ
1

'
2 −−=Ω ∑

=

kpNee
N

t
tt . 

The use of 1Ω̂ rather 2Ω̂  is due to the fact that 

Hotelling's 2T  in (3) relies on the likelihood and large 
sample principles.  On the other hand, small sample sizes 
occur frequently in practice, often distorting the false 
alarm rate in Phase I, and subsequently, the power in 
Phase II. Therefore, we consider α,,)/()1( kNkFkNNk −−− , 

as an alternative critical value to 2T in (3), where 

α,, kNkF −  denotes an F distribution with the degrees of 

freedoms k and N-k, and α is the level of significance [9].   
 

B.  Statistical quality issues in a VAR process  
 There are three classes of parameters in a VAR   
model: the process mean, the covariance matrix of error 
term, and the autoregressive coefficients of the model. [6] 
showed that the effect of a parameter shift depends on the 
magnitude of the shift as well as the resulting estimated 
parameter values.  However, their discussion assumes the 
control limits are correctly established in Phase I and the 
uncertainty in parameter estimation due to a small sample 
size is not accounted for.  [5] showed that the false alarm 
rate may change according to the values of Ω  in their in-
control VAR(1) simulation study.  [6] also pointed out 
that the VAR residuals are only asymptotically i.i.d. 
Therefore, to use the convenient Type I error way of 
setting up control limits for the VAR chart, one needs to 
have the Phase I sample size large enough in order to 
guarantee the serial independence of the residuals. 
However, no conclusion has been drawn with regard to 
the appropriate sample size.  [4] used 100 observations to 
establish their Phase I control chart, but only the change 
of Ω in the bivariate VAR(1) model was considered.  Our 
simulation will provide more insight into this issue. 

 As discussed in the previous section, the following 

Hotelling 2T 's and the corresponding control limits are 
considered  in the study: 

ttc eeT 1
1

'2
1

ˆ −Ω= ≥
2
,αχk                                               (4) 

ttc eeT 1
2

'2
2

ˆ −Ω= ≥
2
,αχk                                               (5) 

ttF eeT 1
1

'2
1

ˆ −Ω= ≥ α,,

)1(
kNkF

kN

Nk
−−

−
                        (6) 

ttF eeT 1
2

'2
2

ˆ −Ω= ≥ α,,
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kNkF

kN

Nk
−−

−
                        (7) 

Given α=0.0027, the 2T control chart schemes yield an 
overall in-control ARL of approximately 370.  Both 
Phases I and II employ 20,000 replicates to calculate the 
ARL criterion. 
 
 

III.  RESULTS 
 

A.  Simulation design 
Any shift on one or more of the three parameters, µ , 

jΦ 's, and Ω , may change the distributions of the chart 

statistic and induce out of control signals.  To verify the 

performance of 2T  on monitoring a VAR process, We 
follow the simulation design in [6].  A tri-variate VAR(3) 
model is generated with the mean vector 

( )1.11.21.1' =µ , and the covariance matrix of the 

error term and the coefficient matrices are defined as 
follows: 
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. 

The change of mean imposes a multiplier, 1.1, 1.2, or 1.3, 
of the mean vector above.  The shift of covariance matrix 
uses a multiplier 1.05, 1.1 and 1.2.  The change of 

jΦ focus on varying 1Φ . That is 
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where c=0.2, 0.1, -0.1, -0.2, and -0.3. 
      Apart from examining the shift in the model 
parameters, the simulation design considers the effects of 
various model configurations, specifically, the number of 
variables or series (k), the number of order (p), and 
sample size (N).  For the Phase I scheme, the sample size, 

1N , of each data set is assigned to be 50, 100, 250, and 

500.  While the sample size for Phase II, 2N , is 20% or 

40% of 1N .   

 
B.  Simulation results 
     TABLE I shows the in-control ARL values under the 
Phase I scheme, indicating the occurrences of false alarms 
in 20,000 replications.  Since the expected ARL is 370, it 

is obvious that 2
1cT  outperforms the other three methods 

no matter what the sample size, 1N , is.  It expects that the 
sample size increases, the ARL values for all other three 

methods, 2
2FT , 2

1FT , and 2
2cT  will converge to that of 2

1cT   

with various converging speeds. The table also shows that 
the sample size required in Phase I to achieve the 
theoretical ARL is rather large, and one should be 
cautious when a more complicated model is employed. 
     TABLE II presents the out-of-control ARL results 
under Phase II scheme for a VAR(3) model.  “None" in 
the table denotes the in-control case, which means no 



 

change in any parameter in the Phase II scheme.  Under 

this case, 2
2FT appears supreme even although it does not 

yield a  reasonable performance for small sample size (say 

1N  <100) under Phase I scheme.  The ARL values show  
2

1
2

1
2

2
2

2 cFcF TTTT >>>  in TABLE II. 

     The change of mean vector results in quite consistent 

departure of all 2T 's in terms of ARL.  Under the same 

1N  for Phase I and 2N  for Phase II, the comparison of 
ARL values of these four methods yields 

2
1

2
1

2
2

2
2 cFcF TTTT >>>  for different kinds of change of 

µ  in the same model.  The ARL values are quite close 

under the same 2T  no matter what sample size is in the 

Phase II scheme.   For a given 2T , the ARL values 

increase as the sample size, 1N , in the Phase I increases; 
however, the ARL values remain similar irrespective of 

the sample size, 2N , in Phase II. 
      The smaller out-of-control ARL values should be 
expected when there exists a shift on any parameter from 
the process.  Nevertheless, we may suspect that the ARL 

values are too small for some 2T 's in TABLE II.  In 
other words, the power of the test statistic is over-stated. 

To evaluate the accuracy of 2T  in (4)-(7), simulated 
ARL values for all configurations using large samples are 
carried out in TABLE III for a VAR(3) model.   The 
values in TABLE III are obtained by using 10000 data 
points for Phase I and another 10000 observations for 
Phase II.  The same settings for parameters are employed 
as discussed in the simulation design section.  When we 
look at each row in TABLE III, all the ARL values are 
quite similar in the same configuration no matter what 

2T 's are used.  It concludes that all versions of 2T  have 
an equal performance when large samples are applied in 
both Phase I and II schemes.   
        To compare the values in TABLE I and TABLE II, 

2
2FT  is the one fast approaching to the simulated in-

control ARL values in both Phase I and Phase II schemes.  

The 2
1cT suggested by [6] leads to the smallest values 

among all 2T 's in TABLE I and it is very sensitive to the 
change, which results in an increase in the false alarm rate 
in Phase II.  This phenomenon is also present in the 
change of mean vector as well as a shift of other 
parameters and it gets worse as the sample size decreases. 
      The similar phenomena appear in the change of Ω  
shown in TABLE II.  The larger the multiplier values in 
the change of  Ω , the smaller the ARL values are under 
the same condition.  The ARL values are sensitive to the 

sample size of 1N  in the shift of variance.   

     The change of 1Φ leads to the same results as those of 

µ  and Ω . The ARL values for the change of 1Φ  shows 

2
1

2
1

2
2

2
2 cFcF TTTT >>>  in TABLE II.  The deviation of 

ARL values among these 2T 's keeps in the right 
direction as the shift of the parameters, that is, the larger 

the change is, the smaller the value of 2T  is.  Although 

only one element, c, is changed in 1Φ for a VAR(3) 
model, the resulting ARL values are very different as 

shown in TABLE I.  The ARL values yielded by 22FT   are 

the closest to the simulated out-of-control ARL values 
(see TABLE III).  
 

IV.  DISCUSSION 
 

 In summary, all 2T 's defined in (4) to (7) are 
sensitive to the change of parameters and sample sizes. As 
the sample size in Phase I increases, the ARL values 
decrease (and converge to the expected ARL value) for all 
simulation cases under the same conditions.   Given the 
same sample size in Phase I, the in-control ARL values 
remain quite similar regardless of the sample sizes in 
Phase II.  Although we only consider the change of one 
parameter at a time, the effect of a parameter shift on 
ARL is already apparent.  One can induce that 
simultaneous change of the parameters will lead to more 
significant results. 
 

V.  CONCLUSION 
 

 We verify, via a Monte Carlo approach, the effects of 

a parameter shift and sample size on the 2T  statistics 
when a VAR model is employed.  Both the sample size 

and the critical value for the Hotelling 2T  statistic for 
Phase I scheme are confirmed to achieve a reasonable 
average run length, leading to a reasonable Phase II 

monitoring chart.  Our suggestion is to use 1Ω̂ and 2χ  

distribution for the Hotelling 2T statistic under Phase I 
scheme when sample size is not large, while there is no 

difference in using (4)-(7) for larger samples. 2Ω̂  and F 

distribution are suggested to be applied under the Phase II 
scheme. 
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TABLE I 

IN-CONTROL ARLs OF PHASE I SCHEME FOR A VAR(3) MODEL  
 

1N  
2

2cT  
2

1cT  2
2FT  

2
1FT  

50 11627.91 880.28 166666.67 5494.51 

100 1233.81 531.35 2801.12 1052.63 

250 567.67 423.66 730.14 541.54 

500 452.90 395.93 510.07 443.71 
 
 

                                                                                         
TABLE II 

OUT-OF-CONTROL ARLs OF PHASE I SCHEME FOR A VAR(3) MODEL  

Shift 

1N  

2N  

40% 1N  20% 1N  

2
2cT  

2
1cT  2

2FT  
2

1FT  
2

2cT  
2

1cT  2
2FT  

2
1FT  

None 50 33.02 15.76 64.99 27.56 33.23 15.91 66.89 27.82 

100 108.30 65.64 173.12 98.29 110.10 66.05 176.29 99.70 

250 232.56 181.97 287.77 223.49 232.29 181.98 287.03 222.62 

500 293.28 257.58 327.33 288.06 291.72 256.11 323.83 286.20 

1.1µ 50 22.97 11.73 42.27 19.54 23.05 11.76 42.03 19.61 

100 70.97 44.30 107.12 64.72 70.09 44.02 105.15 63.93 

250 149.11 119.15 182.00 143.93 148.15 118.29 179.86 142.98 

500 189.96 168.46 210.33 186.50 190.51 168.95 211.28 186.93 

1.2µ 50 11.85 6.80 19.91 10.31 11.82 6.77 19.89 10.28 

100 31.60 21.21 45.46 29.16 31.58 21.16 45.40 29.10 

250 59.46 49.30 70.42 57.67 59.49 49.41 70.71 57.64 

500 74.83 67.63 81.78 73.70 75.13 67.87 82.18 73.98 

1.3µ 50 6.23 4.00 9.48 5.58 6.25 4.02 9.52 5.59 

100 13.30 9.63 17.85 12.52 13.40 9.67 17.92 12.60 

250 23.18 19.73 26.65 22.58 23.28 19.78 26.76 22.69 

500 28.50 26.16 30.71 28.13 28.48 26.18 30.69 28.13 

1.05Ω 50 27.94 13.64 53.50 23.49 28.28 13.82 54.36 23.72 

100 86.96 53.69 134.98 79.59 87.72 54.14 137.69 80.06 

250 171.03 136.18 209.03 164.88 172.38 137.63 211.42 166.22 

500 217.60 193.69 241.79 213.94 217.39 193.44 241.84 213.70 

1.1Ω 50 24.50 12.31 45.73 20.74 24.41 12.39 45.00 20.68 

100 69.91 44.06 106.02 63.96 70.25 44.16 107.90 64.21 

250 134.07 107.96 162.04 129.16 134.26 108.90 162.28 129.58 

500 165.71 147.35 183.37 162.77 164.95 147.03 182.78 162.11 
 
 
 



 

TABLE II (continued) 

1.2Ω 50 18.85 9.89 33.56 16.08 18.94 9.95 33.47 16.13 

100 47.70 31.17 69.41 43.98 48.30 31.55 70.21 44.57 

250 86.03 70.10 102.62 83.29 86.13 69.72 103.08 83.09 

500 101.97 92.03 111.85 100.32 101.97 92.01 111.79 100.35 
*
1Φ   

 -0.2 

50 5.65 3.72 8.30 5.09 5.71 3.75 8.40 5.14 

100 11.71 8.66 15.41 11.05 11.68 8.66 15.37 11.01 

250 19.38 16.76 22.04 18.95 19.42 16.80 22.10 19.00 

500 23.12 21.38 24.74 22.84 23.16 21.43 24.78 22.89 

-0.1 50 15.15 8.31 26.33 13.05 15.24 8.37 26.50 13.16 

100 42.58 27.69 62.07 39.26 42.25 27.45 61.56 38.94 

250 80.99 66.03 96.58 78.47 81.56 66.28 97.38 78.86 

500 102.32 91.90 112.64 100.60 102.66 92.03 112.76 100.93 

 

 0.1 
50 11.60 6.81 19.08 10.17 11.53 6.80 18.97 10.09 

100 31.73 21.40 45.06 29.37 31.13 21.09 44.21 28.86 

250 60.50 50.07 71.27 58.63 60.65 50.30 71.55 58.78 

500 74.34 67.02 81.13 73.23 74.25 66.96 81.03 73.18 

0.2 50 2.96 2.23 3.90 2.76 2.98 2.24 3.91 2.77 

100 4.87 3.93 5.91 4.67 4.88 3.93 5.91 4.68 

250 7.06 6.33 7.78 6.94 7.06 6.33 7.78 6.94 

500 8.12 7.65 8.54 8.04 8.15 7.68 8.57 8.07 

0.3 50 1.39 1.25 1.56 1.35 1.39 1.25 1.56 1.36 

100 1.61 1.48 1.74 1.58 1.61 1.48 1.74 1.58 

250 1.81 1.73 1.88 1.79 1.80 1.73 1.88 1.79 

500 1.89 1.84 1.93 1.88 1.89 1.84 1.93 1.88 
 

TABLE III 
SIMULATED ARL VALUES FOR A VAR(3) MODEL       

 2
2cT  

2
1cT  2

2FT  
2

1FT  

Phase I 357.143 344.828 357.143 344.828 

Phase II 

None 277.778 277.778 277.778 277.778 

1.1µ 212.766 212.766 217.391 212.766 

1.2µ 84.034 84.034 84.034 84.034 

1.3µ 28.490 28.490 28.571 28.490 

1.05Ω 285.714 277.778 285.714 285.714 

1.1Ω 163.934 163.934 166.667 163.934 

1.2Ω 116.279 116.279 119.048 116.279 
*
1Φ        -0.2 23.753 23.641 23.810 23.753 

0.1 95.238 94.340 96.154 95.238 

0.1 76.923 76.336 76.923 76.923 

0.2 8.097 8.078 8.117 8.097 

0.3 1.868 1.867 1.870 1.868 
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