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I. INTRODUCTION

In a series of articles, Ericson, W. A. [1, 2, 3, 4] has put forth a subjective
Bayesian approach to problems of inference regarding characteristics of finite
populations. The basic model of a finite population is taken to be that which
was initially put forth and subsequently used by Godambe, V. P.[5, 6, 7] and others.
The model may be summarized as follows:

The notation of this section follows that of Ericson [4]. A finite population
of N distinguishable units is defined by N = {1, 2, ...,N}, the set of unit labels,
and by X = (X, ..., XN)> where X; is the unknown value of some characteristic
possessed by the population element labelled or identified by the integer i. For
any sample from this population we let (s, x) denote the Bayesian sufficient
statistic, compﬁsing s C N where s is the set ot the n distinct population elements
included in the sample and x = (xib..., Xi,) is the vector of the observed values
of Xij for ij € s. If p(X) denotes any joint density assigned to X, then the posterior
distribution of X given any sample has density given by

p(X)/pg(x), for X such that Xj; = Xij, j € s (1)
0, otherwise, .
where Pg(X) # 0 denotes the marginal prior density of Xij evaluated at Xijs i€ 8.
While many other classes of prior densities, p(X), will be useful to study we
will consider here only those which represent finitely exchangeable prior knowledge
regarding the X;’s and moreover can be generated by assuming that conditional
on some parameter 0 = (01, ..., Om) the X;’s are independent, identically distributed
with density f(X|0) and that 6 is assigned a distribution with density g(). Thus

p(XI(s, X)) = {

N .
p(X) = I IT £(X; | 0)g(6)do (2)
gi=t

IR N
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It follows from (1) that under the class of priors in (2) the posterior density of
X given any sample is given by

f TLA(X; | 6) g (8 | (s, X)) df for X such that
p(X | (s, x) =10

‘¢S XpTxpHEs )

0, otherwise.

where g(0 | (s, x)) « %Sf(xi | 6) g (0) is the posterior density of ttllqe parameter 0.

The mean of the finite population will be denoted by u = i§1 Xi/N, and we
will let u(8) = E(Xj | 8) be the mean of the conditional distribution of Xj given
6. Finally we wiil let X denote the unknown mean of any subset of n of the distinct
finite population characteristic values, Xj, and given the sample sufficient statistic,
(s, x), will let X = £ xi/n be the observed sample mean.

The theoremlﬁ)selow given by Ericson [4] will be compared with the new
results which are to be given in the present paper.

Theorem 1. (Ericson) Under the model in (2) suppose that, conditional on 6,
Xy» .., Xy are independently distributed with common density f(X | ). Let Gy
be a class of distributions of # haveing density g(f | X', n’, y') for (x', n’, y') €Y,
say. Suppose that Gy has the property that if x is any observation on X and if a
prior distribution of 6 is taken to be g(6 | x', n’, y') € Gy then the posterior dis-
tribution of 8 has a density given by

glglx+x',n+tn’,y”’)€EGy 4

where a single-primed symbol denotes a prior parameter, double-primed a posterior
parameter and an unprimed symbol a sample statistic. Finally, letting m’ = E(X),
suppose that for every g(6 | x', n', y') € Gy

m' = B (E(X; | 0)}= B, [ #(0) 1 = (x' + a)/(n’ + b) ()
where a and b are any constants.

Then, given any sample yielding the values (s, x):

X Var [ (@) 1 +m' E; [ Var(X | 6) ]
Var [ p(0) | + E, [ Var( X | 6) ]

E[ @ |, x)] = (6)

X Var () + m' Eu [Var()_( | wy ]
Var (u) + E, | Var (X | ) ]

Elul@G x)] = @)

-2 -
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Var [ u(0) | (s, x) ]
Var [u(9)}

Var[ ml(s, %) 1 = N;\I“ { }Var(m (8)

It is readily seen that all of the conditions of the theorem hold if f(X | 8) is
a member of the exponential family, if a member of a perhaps extended class of
natural conjugate priors is assigned to 6, and if (5) holds. For example, the forms
(6) through (8) hold in the cases where f(X | ) is taken to be normal with known
variance, normal with unknown mean and variance, binomial, Possion, etc., and
g(f) taken to be normal, normal-gamma, beta, gamma, etc., respectively. It is
well known that under a squared-error loss function, the posterior mean of u is
the Bayes estimator of u. We note that the posterior mean of u in (7) is a weighted
average of the prior mean m' and the sample mean X with weights inversely pro-
portional to the prior variance of u and the prior expected conditional sampling
variance of the sample mean.

II. THE POSTERIOR MEAN AND
THE BEST LINEAR UNBIASED ESTIMATOR

In the present study, a further generalization of Ericson’s theorem is given
which provides a similar tie between the posterior mean and the best linear unbiased
estimator.

Theorem 2 Suppose n elements of nxl vector X = (X, ..., Xn)' and 6 are any n+1
jointly distributed random variables such that

(a) E (8)=m, Var (8) = v (9) <ee.

(b) 2(X), the dispersion matrix of X is nxn positive definite.

) EXlH=06,i=1,..,n
Suppose also that either

) F@©O1X) =XB+a,f=(By, By
or ()« andé are chosen to minimize

Ex [E(61X)-XB-a]?
Under these conditions, then
fv(@)+mE, [Var (616) ]
v(9) +E, [Var (6 16)]

where § = 1I'[ZCO1IX/1 (X)) 1L, 1= (1, 1, .., 1)), is the usual best linear
unbiased estimator of @ with respect to the dispersion matrix Z(X) or E; [ Z(X {6)].

E@1X)=
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Further, the expected value of the posterior variance of 0 is given by
Ey [Var(81X)] = v(6)[ 1 - v(®)I'[Z01!1 ]

E, [Var (616)]
=v(0)[ ; ] (1D
v(8) + E, [Var(610)}

Proof: It suffices to prove the results (10) and (11) under conditions (a), (b),
(c) and (d’) since condition (d) is a special case of (d’). Note that E(X|#) =61 and

2

E(X-ml][X-ml])’
E[(X-6D+(0-m)L]1[(X-61)+(@-m)l]'
E, [ Z(X16) 1 +v(6)1 I (12

Now, from the generalized least squares theory, we have the best linear unbiased
estimator of 6 with respect to the dispersion matrix EG[E()_(IG)] as follows:

U[E,ZXIOIIX  _1'L ZX) - v(@)L 1" 171X
UEZXIOITL 'l 2 - w1 1' 1711

6 = (13)

Since Ee [Z(X|0)] differs from Z(X) by a matrix of constants, v(6)1 1’, 6 must
also be the best linear unbiased estimator of 6 with respect to the dispersion
matrix Z(X), hence

6= 1EEOrX / EIL (14)

Note that the equivalence of (13) and (14) may also be shown by direct comput-
ation. The expected value of the conditional variance of 8, given 6 is as follows:

E, [Var(616)]

E, {y[z@)]'lque)[zo_()rl; }
201 11)?
i 1'[21(X)1'11 O "
It is easily to show that the following identity holds:
Ex-( 6 -XB-a)® = Ex[Var0IX)] + Exl E@X) - XB-« 1> (16)

From this identity, we see that the selection of a and 8 to minimize (9) is equivalent
to the choice of o and § to minimize the left-hand side of (16). Computing the
expectation of the left-hand side of (16) and minimizing it by straight forward
method yields



Bayesian Estimation in Two-stage Random Sampling

o =m- mlg (17
and B = vOIZX)] 11 (18)
Hence, XB+a =ml-v@®OUIZND + v [ZX1IX (19

Substituting (14) and (15) into (19), we have
6 v(6) + m E, [ Var(810)]
v(6) + E, [ Var(§16) ]

XB+a-

From the right-hand side of (16), we see that the minimum is attained at E(HI)_()
=X+ a
Finally, thc‘ expected value of the posterior variance of 6 is obtained as follows:

Ex[Var (01X)] = ExEy x[0-BX-a]?

B = ExE, x[(6- m)-§(X-mD]?
v(8) + FEZX)B- 2[v(0)12F1
v(0) - [V ()18 1
v(O)[ 1-v(O)1'[Z(X)]1 1]

The theorem is of some interest in itself, namely, if the posterior mean of
6 is a linear combination of X, then it is a weighted average of the prior mean af
6 and the generalized least squares estimator of 6, with weights inversely pro-
portional to the prior variance of 6 and the expected value of the conditional
variance of the generalized least squares estimator of 8, given 8, respectively.
It is obvious that the posterior mean of 8 will coincide with that of Ericson’s result
given in (7) when the dispersion matrix of X is of the form 021, where I is the
identity matrix. This result will be immeidately applicable in the Bayesian analysi
of two-stage random sampling given in the succeeding sections.

III. A CLASS OF PRIOR DISTRIBUTIONS IN
TWO-STAGE RANDOM SAMPLING

Suppose that the population under study consists of N primary sampling
units (psu’s) of unequal size and let M; denote the number of secondary sampling
units (ssu’s) in the i-th psu. Correspondingly let Xij denote the characteristic
value of interest associated with the j-th ssu within the i-th psu. Let

/ M (20)
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We define the population parameters as follows:

L3 ! hzd:i X 2D
= — 2 . .’ . = — )
N 21 Wikj Hi M, 2y
. LN 2
ij=l
1 N
B=x I Wi Wi-w’ (23)
1 N
and X Z Vi of (24)

All of these population parameters are assumed unknown and u is the target
of inference.

The simplest useful class of prior distributions is that under which the random
variables are taken to be exchangeable. N random variables are said to be ex-
changeable if the joint probability distribution of each of the N! permutations
of the variables is the same. The class of exchangeable prior distributions given
in (2) was extensively used in Ericson’s papers. The main results of the present
study will be demonstrated under a fairly general class, C, of prior distributions.
This class of prior distributions is briefly that under which, conditional on the psu
mean and variance oiz, the Xij’s are taken to be exchangeable and independent
over the psu’s and, further, the psu means and variances are exchangeable.

The class C of prior distributions is defined by the following two assumptions:

Al. Conditional on (5 oiz), the Xij’s are exchangeable for all j and also, for
i+ h, Xij and Xy are independent for all j and k.

A2. For i =1, 2, ..., N the ordered pairs (uj, Ui2) are exchangeable random
two-tuples such that the following moments exist:

E(u) = m, Var () = v, Cov (4 , uy) = pv, B(0D = 7

For making Bayesian inference about u, we require to specify four para-
meters of the prior distribution in the class C as by A2, namely, m, v, p and 7.
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This spec:fication does not define a unique prior but suffices for determining the
form of the posterior mean of u, the Bayes estimator of u under the squared-error
loss function.

Let 5—(1 denote the mean of a sample of size m; drawn from the i-th psu by
simple random sampling without replacement. The following results are easily
shown.

Lemma 1 If the prior distribution of the population under study is in the class
C, then

E Xy luy,0f )=EX;luy,0f)=p (25)

Var (X5 1 1 of ) =of (26)

Cov (Xij » Xy | #y, 02 ) =-af [ (M- 1) Q27
N[1 - rl’l1 0-2

_tr 11 (28)
M; -1 m;

The following lemma can be trivially shown by using lemma 1 and the well-
known theorem that if X and Y are two random variables, then the variance of
X is equal to the expected value of the conditional variance of X, given Y plus
the variance of the conditional expected value of X, given Y.

Var (X; | uj , 0f ) =

Lemma 2. If the prior distribution of the population under study is in the class
C, then

E(=EX)=EXy)=m (29)
Var (u) = v (1 - p) 8 + pv, where 8 = 21 w? /N? (30)
E03) =7 (31)
E (0f) = v (1-p)1 - 8) (32)
Var (Xj) = v + 7 (33)
Cov.(X;5 , Xj) = v - m/(M; - 1), j #k (34)
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Cov (X;; , Xpyy) = Cov (X;, Xp) = pv, i # h 35)
Mj-m =

Var(X)—v+———-—-—- (36)
Mi-1 m

1

The prior expectations of the conditional variance and covariance of )_(i’s,
given u are obtained in the following lemma.

Lemma 3. If the prior distribution of the population under study is in the class
C, then

E@lw=EXIw=u 37
- Mj-m; =

E, [Var (Xj | w)] = v(1 -p)(1 - 8) + F ;1 (38)

E, [Cov (X;, X, W] =~v(1-p) 8 (39)

The proof of lemma 3 follows first by observing that by A2 the [J.IS are
marginally exchangeable and remain exchangeable conditional on their sum or
on u. The result then follows from lemma 1, lemma 2 and

E@lus=
E, [Var(X | )] = Var(X) - Var[EX; | w)].

Now, let n psu’s be selected by simple random sampling without replacement
from a population of N psu’s. Let m; (i = ., ) ssu’s be taken independently
by simple random sampling w1thout replacement from the M i=1,2, .., n
ssu’sin the selected psu’s. Let X denote nxl vector whose elements are the subsample
means X s. Then, the dispersion matrix of X, denoted by Z(?_(), is obtained from
lemma 2 as follows:

ZX)=D+pv1 1l (40)
where D is nxn diagonal matrix whose i-th diagonal element is

M.-m =«
d=v(a-pp+ 2T T 1)

Mi -1 m,
The prior expectation of the dispersion matrix of X conditional on u, denoted

- 8 —
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by Eﬂ [Z(g | w)], is obtained from lemma 3 as follows:
E, [ZX Iml=D-v(1-p) 811 (42)
To find the inverse of £(X) and E, [Z(X | p)], the following lemma is useful.
Lemma 4. let the nxn matrix A be given by
A=D+hxab’

where D is a nonsingular diagonal matrix, a and b are each nxl vectors, and A\
is a scalar such that

5 1
N2 g by )
l=
The inverse of A is
A—l — D-l + 7a*b*'
where v = - X (1 + A 2 abi/d; )L, & = a/d; , b = b/d; , and d; is the

i-th diagonal element of |
Proof: The proof is given by showing that AAl =1

Now, using lemma 4 we obtain the inverse of E(X) and E [E(X [ w]
as follows: The inverse of E(X) is
X! =Dl +yuuw (43)
n ] 1
where v = pv/( 1 + pv i2=:1 y; ) and u; = d;.
The inverse of Eu [ =X | w)] is
[EuZ(X w1l = D! + « uu' (44)
n
where o« = v(1 - p) 8/[ 1 v(1 - p) & i)glui 1.
The results of this section will be immediately applicable in finding the Bayes

estimator of the population mean g with two-stage random sampling given in the
next section.



The Journal of National Chengchi University vol.40, 1979

IV. THE BAYES ESTIMATOR OF A POPULATION MEAN

Suppose that the population of interest consists of N psu’s of unequal sizes
and suppose that the prior distribution of the population belongs to the class C
defined in the preceding section. Let n psu’s be selected by simple random sampling
without replacement from the population and let m; (i = 1,2,...n)ssu’s be taken
independently by simple random sampling without replacement from the M;
GGi=1, 2, ..., n) ssu’s in the selected psu’s. Let X denote the nxl vector whose
elements are the subsample means, )-Zi’s. Then, it is easily to see that, under the
correspondence u + 6 and X+ X, the conditions (a), (b) and (c¢) of Theorem
2 are met. Now, if we use the squared-error loss function to find a Bayes estimator
of u and if the posterior mean of u is linear in _)—S then the Bayes estimator of u
is the posterior mean of u which is, from Theorem 2, the weighted average of m,
the prior mean of u, and /:L, the best linear unbiased estimator of u, with weights
inversely proportional to the prior variance of u and the expectation of the con-
ditional variance of f, given W, respectively. Hence, we have the following result.

Theorem 3. Suppose that a prior distribution in the class C is assigned to a po-
pulation consisting of N psu’s of unequal sizes from which a two-stage random
sample is drawn. If the squared-error loss function is used in finding the Bayes
e_stimz_ilor _of the population mean u and if the posterior mean of u is linear in
X = (Xl’ Xy oy in)', then the Bayes estimator of u is given by

) i Var () + m E, [Var (k)]
ug = : "
B Var (u) + E, [Var (ulw)]

where gt = 1’[2()__()]'1)_2 / 1'[2(2_—()]'11 is the best linear unbiased estimator of u
with respect to either the dispersion matrix of ):(, E():(), or the prior expectation
of the dispersion matrix of X conditional on u,E[EQ—_(lp)]. Further, the expected
value of the posterior variance of u is given by

(45)

E [Var X)] = Var () [ 1- Var (@) I' [ZX)1711] (46)

It can be shown by direct co_mputation that the best linear unbiased estimator
(BLUE) of p with respect to Z(X) is the same as the BLUE of u with respect to
E# [(Z(XIw)]. From (43), we have
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rE@) =10ty uul

n n
= Zouf(1+pv 2 u) (47)
and  I[EX)TX = IDIX 4y 'uu'X
n — n
= T uX /4oy T yp) (48)

From (44), we have

VEZXIw)T1=1D!l+auul

n n
= Zu(l+a X u) (49)
and 1 [E,ZXIm]'X= I'D'X+aluuX
’r1 —_ n
= ZuX(1+e 2 u) (50)

Thus, the BLUE of u is

UEOONX IEIXIwItX

™M=

n -
= Z uXj/

- —_—
u

i riE@riy o [E#E()_—(iﬂ)]-ll i=1

uo 6D

—
1]

From (15), we have the expected value of the conditional variance of i, given
u as follows:

1

E, [Var (2| p)] - Var ()

Ui

n
L+pv Z u
=l [v(1-p)6+pv]

U

]

ME!

n n
[1-v(1-p)8 Z 1ui] / .Elui (52)
i= =

Inserting (51) and (52) into (45), we obtain ;I.B, the Bayes estimator of u  We
note that there is an unknown parameter in ;‘B’ namely,

11 -
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N
W

i=1

5§ = i2/NZ

An unbiased estimator of & is given by

4 1 n
= e— W-

nN =1 1

2 (53)

where w; = M; / M, provided that M is known.
Finally, the expected value of the posterior variance of u can be written in
an explicit form as follows:

n
_ 1-v(1-p)62_3ui
E [Var (u | X)] = T [V(l-pd+pv]  (54)
1+ pv _El u;
l=

Note that the prior expected value of the among psu’s variance, E(o%) does
not appear in the weight u; employed in the BLUE of u. If we consider the variance
of the psu mean 1 defined by

2 - L J (i - 1) (55)
U TN M
— 1 N
where M =-—N— Zlui,
1:

then, the weight u; can be written as follows:

Ml-l’n1 7T
u= [(v(l-p) + —— —1!
_ N Ml-n‘l1 1
“l—E @)+ ——— B! (56)
N-1 M:-1 m;
1 1

It is, therefore, clear that the weight u; contains two components: one arising from
prior variation within the psu’s and one from prior variation among the true
mean of the psu’s.
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V. SUMMARY

In a two-stage random sampling design, suppose that the prior distribution
of the population of interest is in the class C under which the primary sampling
unit (psu) means and variances (ui, oiz) are viewed as exchangeable random variables
with known moments and the Xij"s within each psu are exchangeable and indepen-
dent. Further, suppose that the posterior mean of the population mean u is linear
in the sample means X = (Xl, X2, vy X ) Then, the Bayes estimator of u with
squared-error loss function is the welghted average of the prior mean of u and the
best linear unbiased estimator (BLUE) of u, denoted by &, with weights inveresly
proportional to the prior variance of u and the prior expected value of the con-
ditional variance of u, given K, respectively. The BLUE of u with respect to the
dispersion matrix of X 2(X), is the same as that with respect to the prior expect-
ation of the dispersion matrix of _)S conditional on u, E u [E()_(Iu) . Furthermore,
the BLUE of u is the weighted average of the sample means X with weights
inversely proportional to linear combinations of the prior expected values of the

variance of true psu mean, 0121 and the weighted average of within variances of
psu’s, og‘v.
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