English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88613/118155 (75%)
Visitors : 23474887      Online Users : 260
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/118936
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/118936


    Title: 可贖回CMS區間計息型商品之評價與實證分析: LIBOR與GARCH市場模型之比較
    Pricing and Empirical Analysis of Callable Range Accrual Linked to CMS: Comparison of LIBOR and GARCH Market Models
    Authors: 馮冠群
    Feng, Kuan-Chun
    Contributors: 薛慧敏
    林士貴

    Hsueh, Hui-Min
    Lin, Shih-Kuei

    馮冠群
    Feng, Kuan-Chun
    Keywords: 固定期限交換利率
    對數常態遠期利率市場模型
    GARCH 波動度模型
    區間計息
    最小平方蒙地卡羅法
    CMS
    LFM
    GARCH model
    Range accrual
    Least squares monte carlo method
    Date: 2018
    Issue Date: 2018-07-27 11:34:54 (UTC+8)
    Abstract: 透過最小平方蒙地卡羅法以對數常態遠期利率(Lognormal Forward LIBOR Model, LFM)市場模型,及廣義自我回歸條件異質變異(Generalized Autoregressive Conditional Heteroscedasticity, GARCH) 波動度市場模型來評價可贖回區間計息(Range Accrual)固定期限交換利率(Constant Maturity Swap, CMS)的衍生性商品。在本研究中,由於在區間計息下無法推導出封閉解,以LFM 下的動態過程為基礎,模擬未來的市場LIBOR 利率及CMS 利率,以最小平方蒙地卡羅法評價商品。波動度估計採兩種方式,第一種以歷史資料估計,第二種將LFM 的遠期利率瞬間波動度的假設形式改以GARCH 波動度模型表示,將兩者CMS 模擬結果與真實市場價格做比較。實證結果顯示將LFM 的遠期利率瞬間波動度的假設形式改以GARCH 模型之CMS 模擬更貼近市場真實價格。
    Through the least squares Monte Carlo method, Using the Lognormal Forward LIBOR Model (LFM) and GARCH (Generalized Autoregressive conditional heteroskedasticity) market models to price the derivatives of the CMS (Constant Maturity Swap) Range Accrual. In this paper, since the closed form of solution can’t be derived under the range accrual, firstly we based on the dynamic process under LFM, the forward LIBOR interest rate and CMS interest rate are simulated, and the derivatives is evaluated by the least square Monte Carlo method. There are two ways to estimate the volatility. The first one is estimated by historical data. The second is to change the hypothetical form of LFM's forward rate instantaneous volatility to the
    GARCH volatility model, and the two CMS simulation results are compared with the real market price. The empirical results show that the hypothetical form of LFM's forward interest rate instantaneous volatility which changed to the GARCH model, it’s CMS simulation is closer to the real market price.
    Reference: 中文部分
    1.陳松男,2008,金融工程學-金融商品創新與選擇權理論,三版,台北:新陸書局。
    2.陳松男,2006,利率金融工程學-理論模型及實務應用,台北:新陸書局。
    3.黃貞樺,2007,LIBOR 市場模型下可贖回區間計息連動債券之評價與分析,政大金融研究所碩士論文。
    英文部分
    1. Andersen, T., & Bollerslev, T., 1998, “The Dynamic International Optimal Hedge Ratio”, International Journal of Econometrics and Financial Management, Vol.2,No.3, 82-94.
    2. Black, F., Derman, E., & Toy, W., 1990, “A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options”, Financial Analysts Journal, 24–32.
    3. Bollerslev, T., 1986, “Generalized autoregressive conditional heteroskedasticity”,Journal of Econometrics , Vol.31, 307-327.
    4. Brace, A., D. Gatarek., & M. Musiela., 1997, “The Market Model of Interest Rate Dynamics”, Mathematical Finance, Vol.7, 127-155.
    5. Brigo, D., & F. Mercurio., 2001, “Interest Models, Theory and Practice”. Springer-Verlag.
    6. Cox, J.C., J.E. Ingersoll., & S.A. Ross., 1985, “A Theory of the Term Structure of Interest Rates”, Econometrica, Vol.53, 385–407.
    7. Decaudaveine, M., 2016, “A Review of CMS Swap Pricing Approaches”, Paris Dauphine University Master Thesis.
    8. Engle, R., & Kroner. F., 1995, “Multivariate simultaneous generalized ARCH”, Econometric Theory, Vol.11, 122–150.
    9. Engle, R., 1982, “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation”, Econometrica, Vol.50, 987–1007.
    10. Engle, R., 2002, “Dynamic conditional correlation—a simple class of multivariate GARCH models”, Journal of Business and Economic Statistics, Vol.20, 339–350.
    11. F.C .Palm., 1996, “GARCH models of volatility”, Handbook of Statistics, Vol. 14,209-240.
    12. Glasserman, P., 2004, “Monte Carlo Method in Financial Engineering”, New York, Springer.
    13. Glasserman, P., & Yu, B., 2004, “Number of Paths Versus Number of Basis Functions in American Option Pricing”, Annuals of Applied Probability, Vol.14,
    No.4, 2090-2119.
    14. Heath, D., Jarrow, R., & Morton, A., 1990, “Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation”, Journal of Financial and
    Quantitative Analysis, No.25, 419-440.
    15. Ho, T.S.Y., & Lee, S.B., 1986, “Term structure movements and pricing interest rate contingent claims”, Journal of Finance, Vol.41, No.5, 1011-1029.
    16. Hull, J., & White, A., 1996, “Using Hull-White interest rate trees”, Journal of Derivatives, Vol.3, No.3, 26–36.
    17. Jamshidian, F., 1997, “LIBOR and Swap Market Models and Measures”, Finance and Stochastics, Vol.1, 293-330.
    18. Lin, W.L., 1992, “Alternative estimators for factor GARCH models—a Monte Carlo comparison”, Journal of Applied Econometrics, Vol.7, 259–279.
    19. Longstaff, F., & Schwartz, E., 2001, “Valuing American Options by Simulation: A Simple Least-Squares Approach”, The Review of Financial Studies, Vol. 14, No.1, 113-147.
    20. Lu. Y & Neftci. S., 2003, “Convexity Adjustments and Forward Libor Model: Case of Constant Maturity Swaps”, Working Paper No. 115, National Centre of Competence in Research Financial Valuation and Risk Management.
    21. Plesser, A., 2003, “Mathematical foundation of convexity correction”, Quantitative Finance, Vol. 3, 59-65.
    22. Rebonato, R., 2002, “Modern Pricing of Interest-Rate Derivatives: The LIBOR Market Model and Beyond”, Princeton University. Press, Princeton
    23. Rebonato, R., 1998, “Interest Rate Option Models”, Second Edition, Wiley, Chichester.
    24. Rebonato, R., 1999, “Volatility and Correlation: In the Pricing of Equity, FX and Interest-Rate Options”, John Wiley & Sons Ltd., West Sussex.
    25. Shreve, S., 2004, “Stochastic Calculus for Finance II”, Springer-Verlag, New York.
    26. Svoboda, S., 2004, “Interest Rate Modeling”, Palgrave Macmillan, New York.
    27. Tse Y.K., & Tsui A.K.C., 2002, “A multivariate GARCH model with time-varying correlations”, Journal of Business and Economic Statistics, Vol. 20, 351–362.
    28. Vasicek, O., 1977, “An equilibrium characterization of the term structure”, Journal of Financial Economics, Vol. 5, No.2, 177–188.
    29. Vojtek, M., 2004, “Calibration of Interest Rate Models -Transition Market Case”, Working Paper, Center for Economic Research and Graduate Education of Charles
    University.
    Description: 碩士
    國立政治大學
    統計學系
    1053540191
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1053540191
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.STAT.010.2018.B03
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    019101.pdf1624KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback