English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88666/118324 (75%)
Visitors : 23506412      Online Users : 218
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/119087
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/119087


    Title: 運用資料探勘及支持向量機建立運動新聞媒體分類器
    Using Exploratory Data Analysis and Support Vector Machine to Build Media Classifiers on Sport News
    Authors: 褚承威
    Chu, Cheng-Wei
    Contributors: 薛慧敏
    褚承威
    Chu, Cheng-Wei
    Keywords: 體育新聞
    變數選取
    TF-IDF
    支持向量機
    文本分類
    Sports news
    Feature selection
    TF-IDF
    Support vector machine
    Text categorization
    Date: 2018
    Issue Date: 2018-07-31 13:44:58 (UTC+8)
    Abstract: 新聞是最近所發生事件的消息報導,呈現當時有關某問題、事件或過程的現實情況,而報紙為過往傳播新聞的媒介,隨著網路迅速發展民眾習慣改變,報紙平面媒體轉而發展成網路新聞。網路新聞的內容包含文字、圖片甚至是影音,各家媒體使用習慣皆有不同,過去的研究比較不同媒體新聞內容用法差異,再以人工進行判別媒體。本文則希望透過探索式資料分析(exploratory data analysis, EDA)及TF-IDF(term frequency inverse document frequency)關鍵字篩選方法來關鍵選取文字變數及非文字變數,並運用選出的變數建立支持向量機(support vector machine, SVM)媒體分類器。在建立媒體分類器中,我們發現僅採用非文字變數已有高準確率,而圖片規格為相對重要變數。若僅考慮文字變數時,則少許文字變數便能建立優異的分類器。
    News is a report which show a situation of a problem, event or process at that time. In the past, newspapers are the most common media for spreading news. As the Internet and social media grow rapidly, people’s habits have changed. Nowadays, a majority of people prefers to read digital news instead of news in paper. This study aims to develop a classifier of digital news to predict the newspaper publisher of the news. Over four thousands news articles of sport category published by the four major Taiwanese newspapers: United Daily News, Apple Daily, China Times, Liberty Times, in December, 2017, are collected as training data. Commonly every item of digital news is formed by a title, text content and photos. Hence, the first and the essential step of the analysis is input variable (feature) quantification from available information of news. Moreover, to explore the routine of every newspaper and to improve the computational efficiency, an initial exploratory data analysis (EDA) on the input variables is conducted and relative important variables are selected for classifier development. For the text data, the term frequency-inverse document frequency (TF-IDF) is applied for a keywords selection method. Then, we use these selected variables to build newspaper classifiers by support vector machine (SVM). In our study, we find that a simple classifier based on 19 non-text input variables can achieve a high accuracy. Among them, the image dimensions are the most critical variables. On the other hand, when only considering text information, we observe that few text variables can have excellent classification results.
    Reference: 中文部分
    1.余東霖(2010),以兩階段分類方法識別新聞類別,碩士論文,國立中央大學,資訊管理研究所。
    2.李明安、蔡卓忻(2016),文章分類演算法的比較研究—以中文新聞為例,2016資訊技術與產業應用國際研討會發表論文,臺北城市科技大學。
    3.陳季汝(2009),報紙與警察形象之塑造:以聯合報、自由時報、蘋果日報為例,碩士論文,國立臺北大學,犯罪學研究所。
    4.陳炳宏(2010),媒體集團化與其內容多元之關聯性研究,新聞學研究,第一零四期,頁15-22。
    5.臺灣傳播調查資料庫(2017),台灣民眾媒體使用行為變遷初探-2012年至2016年,臺灣傳播調查資料庫電子報http://www.crctaiwan.nctu.edu.tw/ResultsShow_detail.asp?RS_ID=67
    6.蘇鑰機(2011),什麼是新聞?,傳播研究與實踐,第一卷第一期,頁2-4。
    英文部分
    1.Cortes C., & Vapnik V., (1995), Support vector networks, Machine Learning, Boston, Kluwer Academic, 273-297.
    2.Cristianini N., & Shawe-Taylor J., (2010), Kernel-Induced Feature Spaces, An Introduction to Support Vector Machine and Other Kernel-based Learning Methods, New York, Cambridge University, 27-37.
    3.Joachims T., (1998), Text Categorization with Support Vector Machines: Learning with Many Relevant Features, University Dortmund, Dortmund, Germany.
    Description: 碩士
    國立政治大學
    統計學系
    105354020
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105354020
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.STAT.014.2018.B03
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    402001.pdf2013KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback