English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88531/118073 (75%)
Visitors : 23456979      Online Users : 1
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/124715
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/124715

    Title: YouTuber推薦因素分析與其影響消費者購買意圖之研究
    Analysis of Influencing Factors of YouTubers on Consumers’ Purchase Intention
    Keywords: 網路紅人
    internet celebrity
    source credibility theory
    dual-process theory
    purchase intention
    Issue Date: 2019-08-07 16:07:51 (UTC+8)
    Abstract: 在現今這個網紅當道的世代,YouTuber如雨後春筍般地出現,而這些YouTuber不但受到眾多年輕人的追隨外,其在影片中對商品或服務的看法與意見也深深地左右了人們的購買意向。有鑑於此,本研究欲探討YouTuber於其所製作的推薦類型影片中,有哪些重要因素會影響到觀眾的購買意圖,以及性別與自信心是否會在其關係上造成調節的作用。本研究透過過去與來源可信度理論和雙歷程理論相關之文獻找出八個與本研究相關之重要因素,包含吸引力、可信賴性、專業性、同質性、推薦標誌、正反面評價、論述品質和感知評論量,並且將此八個因素歸納整理成三大類,第一類為與YouTuber本身相關之重要因素;第二類為與影片內容相關之重要因素;第三類為與討論區相關之重要因素。
    本研究透過對觀看過YouTuber推薦類型之影片的使用者進行問卷調查,共回收553份問卷,其中536份有效問卷,採用統計軟體smartPLS 3.0與SPSS第21版進行資料的分析。研究發現,YouTuber推薦的各因素中,對功利價值有顯著影響的因素有:可信賴性、推薦標誌與正反面評價;而對享樂價值有顯著影響的因素有:吸引力、可信賴性、專業性、論述品質與感知評論量;而對購買意圖有直接影響力的因素有:推薦標誌與論述品質。在調節效果的部分,性別會調節吸引力、推薦標誌和論述品質與功利價值間的關係以及專業性與購買意圖間的關係;而自信心會調節吸引力、專業性、推薦標誌、正反面評價和感知評論量與享樂價值間的關係以及專業性和正反面評價與購買意圖間的關係,上述結果可以提供未來網路經營學術及產業之發展。
    In recent years, the Internet celebrity has played an important role in our society. YouTubers spring up like mushrooms. Theynot only have been followed by many young people, but their views and opinions on goods or services in the film also deeply influence people's purchasing intention. Thus, this study is intended to explore the important factors in recommended type of films, the impact of these important factors on purchase intention, and whether gender and self-confidencehave a moderated effect on the influence. This study identifies eight important factors through past literature related to source credibility theory and dual process theory. These important factors including attractiveness, trustworthiness, expertise, homophily, recommendation sign, two-sides reviews, expound quality, and perceived quantity of reviews. These eight factors are summarized into three categories. The first category related to YouTuber, the second category related to the content of the film, and the third category related to the discussion area.
    In this study, we surveyed people who have the experience in watching films on YouTube at least one time, and collected a total of 553 questionnaires, including 536 valid ones.Data analysis was performed by using statistical software smartPLS 3.0 and SPSS 21st.The study found that some factors in YouTuber’s recommendation have a significant impact on utilitarian value, includingtrustworthiness, recommendation sign and two-sides reviews.The factors that have a significant impact on hedonic value areattractiveness, trustworthiness, trustworthiness, expound quality, and perceived quantity of reviews.The factors that have a significant impact on purchase intention arerecommendation sign and expound quality. In terms of the adjustment effect,gender adjusts the relationship between attractiveness, recommendation sign, expound quality and utilitarian value, and the relationship between expertise and purchase intention. Self-confidence adjusts the relationship between attractiveness, expertise, recommendation sign, two-sides reviews, perceived quantity of reviews and hedonic value, and the relationship between expertise, two-sides reviews and purchase intention. The results provide both academic and industry values for the e-commerce field.
    Reference: 【中文部分】
    1. 于永菊和于永娟. (2012). 医学生一般自我效能感, 自我和谐与应付方式的关系研究. 中国健康教育, 28(1), 16-18.
    2. 本會新聞(2018年2月21日)。台灣人更黏手機了!近8成民眾每天使用手機逾2小時資策會:掌握娛樂市場需求成下一波商機。資策會產業情報研究所(MIC)。
    3. 吳宗正和吳育東(2000)。LISREL 模式應用於行動電話消費者滿意之研究。國立成功大學統計研究所碩士論文。
    4. 吳柏羲 (2017年6月25日)。自媒體產業鏈漸成熟內容專業化成發展焦點。資策會產業情報研究所(MIC)。
    5. 汪向东, 王希林和马弘. (1999). 心理卫生评定量表手册. 中国心理卫生杂志, 13(1), 31-35.
    6. 张玲. (2001). 心理健康研究与指导. M]. 北京: 教育科学出版社, 9.
    7. 林娟娟和陳文彥. (2009). 從資訊搜尋觀點探討影響網站使用行為之因素-以體驗導向與目標導向網路活動為比較之研究. 資訊管理學報, 16(4), 21-48.
    8. 南七道(2017年6月26日)。揭秘YouTube上最受欢迎的7大视频。36kr。
    9. 郭貞. (2015). Web 2.0 時代台灣消費者購物模式的轉變: 檢驗 AISAS 網路消費模式. 中華傳播學刊, (27), 139-165.
    10. 陳建中. (2006). 消費者人際傳播類型對虛擬經驗組合之社群感影響. 臺北科技大學商業自動化與管理研究所學位論文, 1-104.
    11. 陳奕璇. (2016). 網紅紅什麼粉絲追什麼.
    12. 粟四維和莊友豪. (2010). 虛擬社群成員知識分享意圖探討. 資訊管理學報, 17(3), 181-204.
    13. 羅之盈(2016年8月2日)。網紅經濟大爆發 有粉絲就有收入。天下雜誌,603。
    1. Angst, C. M., and Agarwal, R. (2009). Adoption of electronic health records in the presence of privacy concerns: The elaboration likelihood model and individual persuasion. MIS quarterly, 33(2), 339-370.
    2. Ayeh, J. K., Au, N., and Law, R. (2013). “Do we believe in TripAdvisor?” Examining credibility perceptions and online travelers’ attitude toward using user-generated content. Journal of Travel Research, 52(4), 437-452.
    3. Babin, B. J., Darden, W. R., and Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of consumer research, 20(4), 644-656.
    4. Bearden, W. O., Hardesty, D. M. and Rose, R. L. (2001). Consumer self-confidence: refinements in conceptualization and measurement. Journal of Consumer Research, 28 (June), 121-134.
    5. Bearden, W. O., Hardesty, D. M., and Rose, R. L. (2001). Consumer selfconfidence: refinements in conceptualization and measurement. Journal of Consumer Research, 28(1), 121–134.
    6. Bearden, W. O., Netemeyer, R. G., and Teel, J. E. (1989). Measurement of consumer susceptibility to interpersonal influence. Journal of Consumer Research, 15(4), 473-481.
    7. Bearden, W. O., Netemeyer, R. G., and Teel, J. E. (1990). Further validation of the consumer susceptibility to interpersonal influence scale. ACR North American Advances.
    8. Bettman, James R., Eric J. Johnson, and John W. Payne (1991), “Consumer Decision-Making,” in Handbook of Consumer Behavior, ed. Thomas S. Robertson and Harold H. Kassarjian, Englewood Cliffs, NJ: Prentice Hall, 54–80.
    9. Bither, S. W., and Wright, P. L. (1973). The self-confidence–advertising response relationship: A function of situational distraction. Journal of Marketing Research, 10(2), 146-152.
    10. Burgess, J., and Green, J. (2009). YouTube: Digital media and society series. Cambridge: Polity.
    11. Burgess, J., and Green, J. (2018). YouTube: Online video and participatory culture. John Wiley and Sons.
    12. Burnkrant, R. E., and Cousineau, A. (1975). Informational and normative social influence in buyer behavior. Journal of Consumer research, 2(3), 206-215.
    13. Chahal, M. (2016). Four trends that will shape media in 2016. [online] Marketing Week. Retrieved 8/03/2016 from http://www.marketingweek.com/2016/01/08/four-trends-that-will-shape-media-in2016
    14. Chang, E. C., and Tseng, Y. F. (2013). Research note: E-store image, perceived value and perceived risk. Journal of business research, 66(7), 864-870.
    15. Chang, H. H., and Wu, L. H. (2014). An examination of negative e-WOM adoption: Brand commitment as a moderator. Decision Support Systems, 59, 206-218.
    16. Chattopadhyay, P. (1999). Beyond direct and symmetrical effects: The influence of demographic dissimilarity on organizational citizenship behavior. Academy of Management journal, 42(3), 273-287.
    17. Chen, C. W., Chen, W. C., and Chen, W. K. (2014). Understanding the effects of eWOM on cosmetic consumer behavioral intention. " International Journal of Electronic Commerce Studies", 5(1), 97-102.
    18. Chen, H. S., and Tsai, P. H. (2010). Study on Influences of Characteristic of Luxury Goods, Impulsive Characteristic and Vanity on Purchase Intention of Luxury Goods. Marketing Review/Xing Xiao Ping Lun, 7(4).
    19. Cheong, H. J., and Morrison, M. A. (2008). Consumers’ reliance on product information and recommendations found in UGC. Journal of Interactive Advertising, 8(2), 38-49.
    20. Cheung, M. Y., Luo, C., Sia, C. L., and Chen, H. (2009). Credibility of electronic word-of-mouth: Informational and normative determinants of on-line consumer recommendations. International journal of electronic commerce, 13(4), 9-38
    21. Cheung, Man Yee, Chuan Luo, Choon Ling Sia, andHuaping Chen (2009), “Credibility of Electronic Word-of-Mouth: Informational and Normative Determinants of On-line Consumer Recommendations”, International Journal of Electronic Commerce, 13 (4), 9–38.
    22. Chi, H., Yeh, H. R., and Tsai, Y. C. (2011). The influences of perceived value on consumer purchase intention: the moderating effect of advertising endorser. Journal of International Management Studies, 6(1), 1-6.
    23. Chiu, C. M., Wang, E. T., Fang, Y. H., and Huang, H. Y. (2014). Understanding customers' repeat purchase intentions in B2C e‐commerce: the roles of utilitarian value, hedonic value and perceived risk. Information Systems Journal, 24(1), 85-114.
    24. Coursaris, C. K., and Van Osch, W. (2016, July). Exploring the Effects of Source Credibility on Information Adoption on YouTube. In International Conference on HCI in Business, Government, and Organizations (pp. 16-25). Springer, Cham.
    25. Deutsch, M., and Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. The journal of abnormal and social psychology, 51(3), 629.
    26. Djafarova, E., and Rushworth, C. (2017). Exploring the credibility of online celebrities' Instagram profiles in influencing the purchase decisions of young female users. Computers in Human Behavior, 68, 1-7.
    27. Dodds, W. B., and Monroe, K. B. (1985). The effect of brand and price information on subjective product evaluations. ACR North American Advances.
    28. Dodds, W. B., Monroe, K. B., and Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of marketing research, 28(3), 307-319.
    29. Eagly, A. H., andChaiken, S. (1993). The Psychology of Attitudes Harcourt Brace Jovanovich College Publishers. Fort Worth, TX.
    30. Ferran, C., and Watts, S. (2008). Videoconferencing in the field: A heuristic processing model. Management science, 54(9), 1565-1578.
    31. Festinger, L. (1954). A theory of social comparison processes. Human relations, 7(2), 117-140.
    32. Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of Business Research, 68(6), 1261-1270.
    33. Filieri, R. (2016). What makes an online consumer review trustworthy?. Annals of Tourism Research, 58, 46-64.
    34. Filieri, R., McLeay, F., Tsui, B., and Lin, Z. (2018). Consumer perceptions of information helpfulness and determinants of purchase intention in online consumer reviews of services. Information and Management, 55(8), 956-970.
    35. Fishbein, M., andAjzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
    36. Freiden, J. B. (1984). Advertising spokesperson effects-An examination of endorser type and gender on 2 audiences. Journal of advertising research, 24(5), 33-41.
    37. Gerbing, David W., Janet G. Hamilton, and Elizabeth B. Freeman (1994), “A Large-Scale Second-Order Structural Equation Model of the Influence of Management Participation on Organizational Planning Benefits,” Journal of Management, 20 (Winter), 859–885.
    38. Gilly, M. C., Graham, J. L., Wolfinbarger, M. F., and Yale, L. J. (1998). A dyadic study of interpersonal information search. Journal of the academy of marketing science, 26(2), 83-100.
    39. Greiner, M. E., and Wang, H. (2010). Building consumer-to-consumer trust in e-finance marketplaces: An empirical analysis. International Journal of Electronic Commerce, 15(2), 105-136.
    40. Griffin, M., Babin, B. J., andModianos, D. (2000). Shopping values of Russian consumers: the impact of habituation in a developing economy. Journal of Retailing, 76(1), 33-52.
    41. Hagander, A., andRúnarsdóttir, M. (2016). The Online Consumer Decision Journey in the Cosmetic Industry.
    42. Harmon, R. R., and Coney, K. A. (1982). The persuasive effects of source credibility in buy and lease situations. Journal of Marketing research, 19(2), 255-260.
    43. Hu, F. L., and Chuang, C. C. (1970). A study of the relationship between the value perception and loyalty intention toward an e-retailer website. The Journal of Internet Banking and Commerce, 17(1), 1-18.
    44. Hyman, H. H. (1942). The psychology of status. Archives of Psychology (Columbia University).
    45. Jerslev, A. (2016). Media Times| In The Time of the Microcelebrity: Celebrification and the YouTuber Zoella. International Journal of Communication, 10, 19.
    46. K.Z.K. Zhang, S.J. Zhao, C.M.K. Cheung, M.K.O. Lee, Examining the influence of online reviews on consumers’ decision-making: a heuristic-systematic model, Decis. Support Syst. 67 (2014) 78–89.
    47. Kamins, M. A., Brand, M. J., Hoeke, S. A., and Moe, J. C. (1989). Two-sided versus one-sided celebrity endorsements: The impact on advertising effectiveness and credibility. Journal of advertising, 18(2), 4-10.
    48. Kang, Y. S., and Kim, Y. J. (2006). Do visitors' interest level and perceived quantity of web page content matter in shaping the attitude toward a web site?. Decision Support Systems, 42(2), 1187-1202.
    49. Kerlinger, F.N. (1999). Foundations of Behavioral Research (2nd ed.). New York: Holt, Rinehart and Winston Inc.
    50. Kim, A. J., and Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business research, 65(10), 1480-1486.
    51. Klein, J., andDawar, N. (2004). Corporate social responsibility and consumers' attributions and brand evaluations in a product–harm crisis. International Journal of research in Marketing, 21(3), 203-217.
    52. Kropp, F. (2006). Values and Self-Esteem. Asia-Pacific Advances in Consumer Research, 7, 14-18.
    53. Kropp, F., Lavack, A. M., andSilvera, D. H. (2005). Values and collective selfesteem as predictors of consumer susceptibility to interpersonal influence among university students. International Marketing Review, 22(1), 7-33.
    54. Lafferty, B. A., and Goldsmith, R. E. (1999). Corporate credibility’s role in consumers’ attitudes and purchase intentions when a high versus a low credibility endorser is used in the ad. Journal of business research, 44(2), 109-116.
    55. Lee, G., andXia, W. (2011). A longitudinal experimental study on the interaction effects of persuasion quality, user training, and first-hand use on user perceptions of new information technology. Information and Management, 48(7), 288-295.
    56. Leon, S., and Leslie, K. (2000). consumer Behavior, Seventh Education, New Jesrssy.
    57. Levy, S., andGvili, Y. (2015). How Credible is E-Word of Mouth Across Digital-Marketing Channels?: The Roles of Social Capital, Information Richness, and Interactivity. Journal of Advertising Research, 55(1), 95-109.
    58. Lim, Y. S., and Van Der Heide, B. (2014). Evaluating the wisdom of strangers: The perceived credibility of online consumer reviews on Yelp. Journal of Computer-Mediated Communication, 20(1), 67-82.
    59. Liu, C., and Arnett, K. P. (2000). Exploring the factors associated with Web site success in the context of electronic commerce. Information & management, 38(1), 23-33.
    60. Long-Crowell, E. (2016). The Halo Effect: Definition, advantages & disadvantages, 2016. Psychology 104: Socialpsychology. study. com.
    61. López, M., and Sicilia, M. (2014). Determinants of E-WOM influence: the role of consumers' internet experience. Journal of theoretical and applied electronic commerce research, 9(1), 28-43.
    62. Luo, C., Luo, X. R., Xu, Y., Warkentin, M., and Sia, C. L. (2015). Examining the moderating role of sense of membership in online review evaluations. Information & Management, 52(3), 305-316.
    63. Luscombe, B. (2015). You Tube's view master. Time, 186(9/10), 70-75.
    64. McCroskey, L. L., McCroskey, J. C., and Richmond, V. P. (2006). Analysis and improvement of the measurement of interpersonal attraction and homophily. Communication Quarterly, 54(1), 1-31.
    65. McGuire, W. (1969). The nature of attitudes and attitude change. Vol. 3.
    66. Michael Strangelove. (2010). Watching YouTube: Extraordinary videos by ordinary people. University of Toronto Press.
    67. Molyneaux, H., O’Donnell, S., Gibson, K., and Singer, J. (2008). Exploring the gender divide on YouTube: An analysis of the creation and reception of vlogs. American Communication Journal, 10(2), 1-14.
    68. Morreale, J. (2014). From homemade to store bought: Annoying Orange and the professionalization of YouTube. Journal of consumer culture, 14(1), 113-128.
    69. Morwitz, V. G., andSchmittlein, D. (1992). Using segmentation to improve sales forecasts based on purchase intent: Which “intenders” actually buy?. Journal of marketing research, 29(4), 391-405.
    70. Mueller, R. O. (1996). Basic principles of structural equation modeling—An introduction to LISREL and EQS. New York: Springer-Verlag.
    71. Nekmat, E., and Gower, K. K. (2012). Effects of disclosure and message valence in online word-of-mouth (eWOM) communication: implications for integrated marketing communication. International Journal of Integrated Marketing Communications, 4(1), 85-98.
    72. Ohanian, R. (1990). Construction and validation of a scale to measure celebrity endorsers' perceived expertise, trustworthiness, and attractiveness. Journal of advertising, 19(3), 39-52.
    73. Ohanian, R. (1991). The impact of celebrity spokespersons' perceived image on consumers' intention to purchase. Journal of advertising Research, 31(1), 46-54.
    74. Park, D. H., and Lee, J. (2008). eWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electronic Commerce Research and Applications, 7(4), 386-398.
    75. Park, D. H., Lee, J., and Han, I. (2007). The effect of on-line consumer reviews on consumer purchasing intention: The moderating role of involvement. International journal of electronic commerce, 11(4), 125-148.
    76. Pavlou, P. A., Liang, H., andXue, Y. (2007). Understanding and mitigating uncertainty in online exchange relationships: A principal-agent perspective. MIS quarterly, 105-136.
    77. Pelle, S., andVonderau, P.(2009). The TouTube reader. Stockholm: Kungliga biblioteket.
    78. Petty, R. E., and Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In Communication and persuasion (pp. 1-24). Springer, New York, NY.
    79. Ramos-Serrano, M., and Herrero-Diz, P. (2016). Unboxing and brands: YouTubers phenomenon through the case study of EvanTubeHD. Prisma social, (1), 90-120.
    80. Rasmussen, L. (2018). Parasocial Interaction in the Digital Age: An Examination of Relationship Building and the Effectiveness of YouTube Celebrities. The Journal of Social Media in Society, 7(1), 280-294.
    81. Rhodes, N., and Wood, W. (1992). Self-esteem and intelligence affect influenceability: The mediating role of message reception. Psychological Bulletin, 111(1), 156.
    82. Rogers, E. M., and Bhowmik, D. K. (1970). Homophily-heterophily: Relational concepts for communication research. Public opinion quarterly, 34(4), 523-538.
    83. Ruef, M., Aldrich, H. E., and Carter, N. M. (2003). The structure of founding teams: Homophily, strong ties, and isolation among US entrepreneurs. American sociological review, 68(2), 195-222.
    84. Schiffman, L. G. and Kanuk, L. (2007). Consumer Behavior, 9th, Upper Saddle River,NJ: Pearson Prentice Hall.
    85. Schiffman, L. G., andKanuk, L. L. (2000). Consumer behavior.
    86. Schlosser, A. E. (2003). Experiencing products in the virtual world: the role of goal and imagery in influencing attitudes versus purchase intentions. Journal of consumer research, 30(2), 184-198.
    87. Senecal, S., andNantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of retailing, 80(2), 159-169.
    88. Sher, P. J., and Lee, S. H. (2009). Consumer skepticism and online reviews: An elaboration likelihood model perspective. Social Behavior and Personality: an international journal, 37(1), 137-143.
    89. Smith, D., Menon, S., and Sivakumar, K. (2005). Online peer and editorial recommendations, trust, and choice in virtual markets. Journal of interactive marketing, 19(3), 15-37.
    90. Smith, N. C., Read, D., and López-Rodríguez, S. (2010). Consumer perceptions of corporate social responsibility: The CSR halo effect.
    91. Spears, N., and Singh, S. N. (2004). Measuring attitude toward the brand and purchase intentions. Journal of current issues & research in advertising, 26(2), 53-66.
    92. Sussman, S. W., and Siegal, W. S. (2003). Informational influence in organizations: An integrated approach to knowledge adoption. Information systems research, 14(1), 47-65.
    93. Tam, K. Y., and Ho, S. Y. (2005). Web personalization as a persuasion strategy: An elaboration likelihood model perspective. Information systems research, 16(3), 271-291.
    94. Teng, S., Khong, K. W., Chong, A. Y. L., and Lin, B. (2017). Persuasive electronic word-of-mouth messages in social media. Journal of Computer Information Systems, 57(1), 76-88.
    95. Teng, S., Wei Khong, K., Wei Goh, W., and Yee Loong Chong, A. (2014). Examining the antecedents of persuasive eWOM messages in social media. Online Information Review, 38(6), 746-768.
    96. Terry, D. J., Hogg, M. A., and White, K. M. (1999). The theory of planned behaviour: self‐identity, social identity and group norms. British journal of social psychology, 38(3), 225-244.
    97. Thorndike, E. L. (1920). A constant error in psychological ratings. Journal of applied psychology, 4(1), 25-29.
    98. To, P. L., Liao, C., and Lin, T. H. (2007). Shopping motivations on Internet: A study based on utilitarian and hedonic value. Technovation, 27(12), 774-787.
    99. Todorov, A., Chaiken, S., and Henderson, M. D. (2002). The heuristic-systematic model of social information processing. The persuasion handbook: Developments in theory and practice, 195-211.
    100. Topaloğlu, C. (2012). Consumer motivation and concern factors for online shopping in Turkey. Asian Academy of Management Journal, 17(2), 1-19.
    101. Townsend, C. (2015). Woman tries to gain Instagram fame by recreating celebrity images. Mail Online. Retrieved 1/03/2016 from http://www.dailymail.co.uk/femail/article-3222664/This-hard-Woman-tries-failsgain-Instagram-fame-copying-snaps-posted-app-s-popular-users-includingKendall-Kylie-Jenner.html
    102. Vishwanath, A., Herath, T., Chen, R., Wang, J., and Rao, H. R. (2011). Why do people get phished? Testing individual differences in phishing vulnerability within an integrated, information processing model. Decision Support Systems, 51(3), 576-586.
    103. Wang, K., Wang, E. T., andFarn, C. K. (2009). Influence of web advertising strategies, consumer goal-directedness, and consumer involvement on web advertising effectiveness. International Journal of Electronic Commerce, 13(4), 67-96.
    104. Wathen, C. N., andBurkell, J. (2002). Believe it or not: Factors influencing credibility on the Web. Journal of the American society for information science and technology, 53(2), 134-144.
    105. Watts, S. A., and Zhang, W. (2008). Capitalizing on content: Information adoption in two online communities. Journal of the Association for Information Systems, 9(2), 3.
    106. Watts, S., Shankaranarayanan, G., and Even, A. (2009). Data quality assessment in context: A cognitive perspective. Decision Support Systems, 48(1), 202-211.
    107. Wilcox, K., and Stephen, A. T. (2012). Are close friends the enemy? Online social networks, self-esteem, and self-control. Journal of Consumer research, 40(1), 90-103.
    108. Wilcox, K., Kramer, T., and Sen, S. (2010). Indulgence or self-control: A dual process model of the effect of incidental pride on indulgent choice. Journal of Consumer Research, 38(1), 151-163.
    109. Willemsen, L. M., Neijens, P. C., and Bronner, F. (2012). The ironic effect of source identification on the perceived credibility of online product reviewers. Journal of Computer-Mediated Communication, 18(1), 16-31.
    110. Wilson, E. J., and Sherrell, D. L. (1993). Source effects in communication and persuasion research: A meta-analysis of effect size. Journal of the Academy of Marketing Science, 21(2), 101.
    111. Xiaobo, P. (2014). The path of influence of e-WOM on consumer purchase intention-based on electronic commerce in China. Journal of Chemical and Pharmaceutical Research, 6(6), 976-983.
    112. Xiaoping, F., andJiaqi, S. (2012, November). Empirical study of the processes of Internet Word-of-Mouth within an online community context. In 2012 International Symposium on Management of Technology (ISMOT) (pp. 624-629). IEEE.
    113. Zhang, K. Z., Zhao, S. J., Cheung, C. M., and Lee, M. K. (2014). Examining the influence of online reviews on consumers' decision-making: A heuristic–systematic model. Decision Support Systems, 67, 78-89.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106356030
    Data Type: thesis
    DOI: 10.6814/NCCU201900487
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    603001.pdf1798KbAdobe PDF0View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback