English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88531/118073 (75%)
Visitors : 23457546      Online Users : 57
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/124763

    Title: 指數型保險對再生能源風險管理之應用:以太陽能輻射發電為例
    Application of Index Insurance to renewable energy risk management:A case study of Solar Power Generation
    Authors: 柯廷漢
    Ko, Ting-Han
    Contributors: 張士傑
    Chang, Shih-Chieh
    Ko, Ting-Han
    Keywords: 太陽能發電
    Solar power generation
    Risk management of solar power generation
    Index insurance
    Forecasting power generation
    Premium calculation
    Date: 2019
    Issue Date: 2019-08-07 16:17:06 (UTC+8)
    Abstract: 本研究介紹國內外太陽能發展與太陽能發電之相關風險管理,其中保險扮演風險管理重要角色。本文著重於指數型保險的研究,運用指數型保險之設計,為太陽能電廠受日照影響而導致發電量不足時,訂定賠付門檻(Trigger),當觸及該門檻與保單其他條件時,指數型保險將會填補該發電量不足所導致之損失。
    This study updates the development of solar energy in Taiwan and other countries and risk management of solar power generation, in which, insurance plays a major role in risk management. This paper applied index insurance concept to design the insurance to compensate the shortfall of power generation due to lack of sunshine once the agreed index is triggered
    This study used the forecast of solar power generation of Changbin Power Plant in Taiwan as reference to do pricing for this index insurance , we analyzed the daily solar radiation data of NASA from 1984 to 2018 in Changbin area to simulate the historical power generation of Changbin Solar Power Plant, and used time series model to forecast power generation. We set P50 and P75 as trigger for the index insurance, the pure premium rate is 21.82% and 8.60% respectively.
    Reference: 李鴻洲,2018。台電月刊666期。臺北:台灣電力股份有限公司。
    饒瑞琦(2011)。太陽光電發電系統效能與可用度之研究,清雲科技大學電機工程系所學位論文 。
    Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea. Symmetry, 11(2), 240.
    Europe, S. (2018). Global Market Outlook for Solar Power 2018–2022. Solar Power Europe: Brussels, Belgium.
    Ghofrani, M., & Alolayan, M. (2017). Time Series and Renewable Energy Forecasting. In Time Series Analysis and Applications: IntechOpen.
    Jahanshahi, A., Jahanianfard, D., Mostafaie, A., & Kamali, M. (2019). An Auto Regressive Integrated Moving Average (ARIMA) Model for prediction of energy consumption by household sector in Euro area.
    Lowder, T., Mendelsohn, M., Speer, B., & Hill, R. (2013). Continuing developments in PV risk management: strategies, solutions, and implications. Retrieved from
    Mapfumo, S., Groenendaal, H., & Dugger, C. (2017). Risk Modeling for Appraising Named Peril Index Insurance Products: A Guide for Practitioners: The World Bank.
    Sawin, J. L., Rutovitz, J., Sverrisson, F., Aberg, E., Adib, R., Appavou, F., . . . Wuester, H. (2018). Renewables 2018. Global status report 2018
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1063580251
    Data Type: thesis
    DOI: 10.6814/NCCU201900360
    Appears in Collections:[風險管理與保險學系 ] 學位論文

    Files in This Item:

    There are no files associated with this item.

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback