English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88668/118332 (75%)
Visitors : 23507365      Online Users : 286
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 學位論文 >  Item 140.119/126580
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/126580

    Title: 基於語境特徵及分群模型之中文多義詞消歧
    Using contextual information in clustering Chinese word senses
    Authors: 周子皓
    Chou, Tzu Hao
    Contributors: 劉昭麟

    Liu, Chao Lin
    Lai, Huei Lling

    Chou, Tzu Hao
    Keywords: 多義詞
    Lexical ambiguity
    Word vector
    Sentence vector
    Date: 2019
    Issue Date: 2019-10-03 17:17:45 (UTC+8)
    Abstract: 多義詞為語言中常見的現象,如英語中的‘bank’,既可表示「銀行」又可表示「河岸」;‘bass’,既可表示「鱸魚」又可表示「電吉他」,而在中文中「黃牛」,既可表示「普通的牛」又可表示「非法仲介人」。而在目前,對於多義詞義項的了解主要透過辭典以及檢索系統,但是,時常仍會有不足的情況,對於辭典,一般收錄較規範化的使用方式以及無法時刻更新。因此對於詞彙較新穎的義項以及較口語的使用方式,辭典並不一定包含;此外對於檢索系統,以中央研究院平衡語料庫檢索系統為例,此系統會將目標詞彙的相關句提供使用者,但是,對於多義詞的義項,使用者必須閱讀所有的相關句後才能得知,其在語料庫中的義項。同時,目前多義詞研究中,人文學者需逐一檢視所擷取出的相關句,並根據人工進行判讀,才能將相關句依據義項進行分群。
    同時,研究中為了觀察是否會因多義詞的類型不同而致使分群的效果以及embedding的結果會有所不同,因此於同形異義(homonym)選取「亞馬遜」、「蘋果」、「小米」、「火箭」、「東西」,作為研究對象;一詞多義(polysemy) 選取「出入」、「出發」、「壓力」、「溫暖」、「東西」,作為研究對象。
    Lexical ambiguityis a common language phenomenon. In English, the word bank can refer to the bank which we save our money or a river bank. In Chinese, the term cattle(黃牛) can stand for either a cattle or a scalper.
    Currently the understanding of lexical ambiguity terms come from either the dictionary or a search system. However, there are often times where a dictionary or a search system is not enough. Dictionaries have a standard procedure for including content and once the dictionary has been published it cannot be updated frequently. Therefore, dictionaries can fail to include new definitions or verbal usage. For search systems, using the Academia Sinica’s database as an example, users are required to read through all related sentences to understand related meanings. Current research on lexical ambiguity requires researchers to examine sentences, extract term meanings and cluster them one by one.
    In this study, the best clustering model and variables are selected based on purity values derived from references provided by the user. Then, the selected clustering model is used to find more terms and references with similar meanings from the database. Finally, the terms will be clustered according to selected meanings.
    This study also observes whether different types of lexical ambiguity will affect the results of clustering and embedding. Therefore, this study chooses homonym such as amazon and apple, polysemy’s such as departure and pressure as research subjects. This study hopes to reduce the time needed for researchers to examine sentences, extract term meanings and cluster them one by one in lexical ambiguity researches.
    Reference: 一. 中文部分
    [1] 中文維基百科。2007。中文維基百科。檢自:zhwiki-latest-pages-articles.xml.bz2。
    [2] 肖航。2011。教材語料詞義分佈量化考察。第十二屆漢語詞彙語義學研討會。
    [3] 吳美嫺。2010。《長阿含經》雙音詞研究。碩士論文。國立東華大學,花蓮縣,臺灣。
    [4] 林育增。2016。繁體版 Jieba。檢自:https://github.com/ldkrsi/jieba-zh_TW。
    [5] 林香薇。2016。閩南語歌仔冊中的多義詞「落 loh8」。師大學報,第 61 卷,第2 期,1-28。
    [6] 許尤芬。2012。中文多義詞「發」之語義探討:以語料庫為本。碩士論文。臺北市立教育大學,臺北市,臺灣。
    [7] 蔡宛玲。2016。漢語多義詞「跑」之結構及語意分析。碩士論文。國立政治大學,臺北市,臺灣。
    [8] 賴惠玲。2017。語意學(初版)。臺北:五南。
    二. 英文部分
    [9] David Arthur and Sergei Vassilvitskii. 2007. K-means++:The Advantages of Careful Seeding. In Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms . SIAM, Philadelphia, PA, USA, 1027-1035.
    [10]Pavel Berkhin. 2006. A Survey of Clustering Data Mining Techniques. Springer,Berlin, Heidelberg, 25-71.
    [11]Yiu-Ming Cheung. 2003. K*-Means:A New Generalized K-means Clustering Algorithm. Pattern Recognition Letters, Volume 24, Issue 15. ELSEVIER,Amsterdam, Nederland, 2883-2893.
    [12]Wilm Donath and Alan Hoffman. 1973. Lower Bounds for the Partitioning of Graphs. IBM Journal of Research and Development, Volume 17, Issue 5. IBM,
    Amonk, NY, USA, 420-425.
    [13]Miroslav Fiedler. 1973. Algebraic Connectivity of Graphs. Czechoslovak
    Mathematical Journal, Volume 23. Matematický ústav, Nové Město, Česko, 298-305.
    [14]Leonard Kaufman and Peter Rousseeuw. 1990. Finding Groups in Data: An
    Introduction to Cluster Analysis. Wiley, New York, NY, USA.
    [15]Shao-Hang Kao and Zhao-Ming Gao. 2007. Feature Selections in Word Sense
    Disambiguation. In Proceedings of the 19th Conference on Computational
    Linguistics and Speech Processing. ACLCLP, Taipei, Taiwan, 131-144.
    [16]Cuong Anh Le and Akira Shimazu. 2004. High WSD Accuracy Using Naïve
    Bayesian Classifier with Rich Features. In Proceedings of the 18th Pacific Asia
    Conference on Language, Information and Computation. LLSJ, Tokyo, Japan,104-114.
    [17]Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and
    Documents. In Proceedings of the 31st International Conference on International
    Conference on Machine Learning, Volume 32. JMLR, USA, 1188-1196.
    [18]Michael Lesk. 1986. Automatic Sense Disambiguation Using Machine Readable
    Dictionaries:How to Tell a Pine Cone from an Ice Cream Cone. In Proceedings
    of the 5th Annual Conference on Systems Documentation. ACM, New York, NY, USA, 24–26.
    [19]John Lyons. 1977. Semantics. Cambridg. Cambridge University Press.
    [20]Wei-Yun Ma and Keh-Jiann Chen. 2003. Introduction to CKIP Chinese Word
    Segmentation System for the First International Chinese Word Segmentation
    Bakeoff. In Proceedings of the 2nd SIGHAN Workshop on Chinese Language
    Processing, Volume 17. ACL, Stroudsburg, PA, USA, 168-171.
    [21]James MacQueen. 1967. Some Methods for Classification and Analysis of
    Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on
    Mathematical Statistics and Probability, Volume 1. University of California Press,
    Oakland, CA, USA, 281-297.
    [22]Christopher Manning, Prabhakar Raghavan and Hinrich Schütze. 2009. An
    Introduction to Information Retrieval. Cambridge University Press, Cambridge,
    Cambs, England.
    [23]Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado and Jeffrey Dean. 2013.
    Distributed Representations of Words and Phrases and Their Compositionality. In
    Proceedings of the 26th International Conference on Neural Information
    Processing Systems, Volume 2. Curran Associates, Red Hook, NY, USA, 3111-3119.
    [24]Roberto Navigli. 2009. Word Sense Disambiguation:A Survey. ACM Computing
    Surveys, Volume 41, Issue 2. ACM, New York, NY, USA, 1-69.
    [25]Andrew Ng, Michael Jordan, and Yair Weiss. 2001. On Spectral Clustering Analysis
    and an Algorithm. In Proceedings of the 14th International Conference on Neural
    Information Processing Systems. MIT Press, Cambridge, MA, USA, 849-856.
    [26]Alessandro Raganato, Jose Camacho-Collados and Roberto Navigli. 2017.Word
    Sense Disambiguation : A Unified Evaluation Framework and Empirical
    Comparison. In Proceedings of the 15th Conference of the European Chapter of
    the Association for Computational Linguistics, Volume 1. ACL, Valencia, Spain, 99-110.
    [27]Peter Rousseeuw. 1987. Silhouettes:A Graphical Aid to the Interpretation and
    Validation of Cluster Analysis. Computational and Applied Mathematics, Volume
    20. ELSEVIER, Amsterdam, Nederland, 53-56.
    [28]Jianbo Shi and Jitendra Malik. 2000. Normalized Cuts and Image Segmentation.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22,
    Issue 8. IEEE, Piscataway, NJ, USA, 888-905.
    [29]Eve Sweetser. 1986. Polysemy vs. Abstraction : Mutually Exclusive or
    Complementary? In Proceedings of the 12th Annual Meeting of the Berkeley
    Linguistics Society. BLS, Berkeley, CA, USA, 528-538.
    [30]OpenCC, https://github.com/BYVoid/OpenCC.
    [31]WikiExtractor, https://github.com/attardi/wikiextractor.
    [32]Tian Zhang, Raghu Ramakrishnan and Miron Livny. 1996. BIRCH clustering:An
    Efficient Data Clustering Method for Very Large Databases. In Proceedings of the 1996 Association for Computing Machinery's Special Interest Group on Management of Data. ACM, New York, NY, USA, 103-114.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104753029
    Data Type: thesis
    DOI: 10.6814/NCCU201901187
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    302901.pdf5256KbAdobe PDF14View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback