English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83053/111947 (74%)
造訪人次 : 21669480      線上人數 : 748
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/55036


    題名: BK離子通道與海馬迴粒細胞死亡的相關性
    The relationship between BK channel alternative splicing and granule cell death in the hippocampus
    作者: 吳君逸
    Wu, Jun Yi
    貢獻者: 賴桂珍
    Lai, Guey Jen
    吳君逸
    Wu, Jun Yi
    關鍵詞: BK離子通道
    海馬迴
    齒狀回
    BK
    Hippocampus
    Dentate gyrus
    日期: 2011
    上傳時間: 2012-10-30 15:22:10 (UTC+8)
    摘要: 海馬迴不僅在學習與記憶中扮演重要的角色,在許多神經退化性疾病中亦佔有重要的地位。海馬迴的齒迴內側區是哺乳動物大腦中成體幹細胞主要來源區域之一,其所新生的海馬迴粒細胞會往上遷移至海馬迴粒細胞層並與固有神經細胞形成功能性連結。
    過去的研究發現太少或過量的壓力荷爾蒙均會造成海馬迴粒細胞的死亡,而一定量濃度的皮質固醇對於維持海馬迴粒細胞的生存亦扮演非常重要的角色。在摘除兩側的腎上腺後,海馬迴粒細胞在幾週後會逐漸死亡且造成認知功能的缺損。本實驗即利用雙側腎上腺摘除術建立動物模式,企圖了解海馬迴粒細胞在凋亡的過程中所產生的生理層面的改變。
    壓力荷爾蒙(包含皮質固醇,在老鼠稱為corticosterone,在人類稱為cortisol)為腎上腺皮質分泌激素,已知會參與並調控BK 離子通道的選擇性剪接。BK離子通道的孔道形成α次單元由單一基因 (Slo) 負責轉錄,含有STREX外顯子的剪接變異體之α次單元藉由加速神經細胞的再極化,增強過極化電位以及促進鈉離子通道自去活化狀態中回復可造成神經細胞重複激發,而先前的研究已發現過度的激發會對神經細胞產生興奮性毒殺作用。本實驗即探討BK 鉀離子通道選擇性剪接在海馬迴粒細胞凋亡的過程中所扮演的角色。 實驗結果發現,與對照組相比,雙側腎上腺摘除的老鼠海馬迴細胞中含有STREX外顯子的剪接變異體在mRNA含量上確實有改變,而BK 鉀離子通道蛋白質含量亦有所變化。由上述結果推測,含有STREX外顯子的剪接變異體含量可能與海馬迴粒細胞的凋亡機制有關。
    The hippocampus is a brain region central to learning and memory and is a key target of many neurological diseases that have dramatic cognitive consequences, including Alzheimer’s and other forms of dementia, stroke, epilepsy, and chronic stress. Hippocampal granule cells are one of the two cell pools that contain newborn neurons continuously generated from the subgranular zone in adult mammalian brains. The newborn neurons will migrate to the granule cell layer and integrate into preexisting neuron network. Previous studies have indicated that both an excessive and insufficient levels of stress hormones can lead to neuron death. Corticosterone, an adrenal stress hormone, is essential for the survival of granule cells. Bilateral removal of adrenal glands leads to extensive granule cell death over a period of several weeks and gradually causes cognitive deficits. To understand the mechanisms underlying the granule cell death in the hippocampal formation, adrenalectomy (ADX, removal of adrenal glands) was used to specifically eliminate granule cells in the hippocampus, and the subsequent physiological changes in the hippocampal neurons including dentate granule cells are investigated.

    Stress hormones (corticosterone in rats and cortisol in human) , secreted from the adrenal cortex regulate the alternative splicing of BK channels (big potassium, calcium-voltage activated potassium channels) in adrenal medulla. An inclusion of STREX (stress axis-regulated exon) exon in pore-forming α subunit encoded by Slo gene promotes repetitive firing by speeding action potential repolarization and augmenting the afterhyperpolarization, as well as facilitating sodium channels de-inactivation. In the present study, the role of BK channel alternative splicing in the ADX-induced granule cell death in the hippocampus was explored. The results indicate that BK channel alternative splicing was regulated by stress hormones in the hippocampus including dentate gyrus. The expression patterns of STREX variant in hippocampus were altered after granule cells death induced by ADX, whilst the expression of total slo gene was changes only in translational level. These observations suggest that the alternation in STREX abundance might be involved in the induction of dentate granule cell death.
    參考文獻: 1.Amaral DG, Scharfman HE, Lavenex P (2007) The dentate
    gyrus: fundamental neuroanatomical organization (dentate
    gyrus for dummies). Prog Brain Res 163:3-22.
    2.Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993)
    mSlo, a complex mouse gene encoding "maxi" calcium-
    activated potassium channels. Science 261:221-224.
    3.Cameron HA, Gould E (1994) Adult neurogenesis is
    regulated by adrenal steroids in the dentate gyrus.
    Neuroscience 61:203-209.
    4.Cui J, Yang H, Lee US (2009) Molecular mechanisms of BK
    channel activation. Cell Mol Life Sci 66:852-875.
    5.De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998)
    Brain corticosteroid receptor balance in health and
    disease. Endocrine reviews 19:269-301.
    6.Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang
    L, Kotagal P, Luders HO, Shi J, Cui J, Richerson GB, Wang
    QK (2005) Calcium-sensitive potassium channelopathy in
    human epilepsy and paroxysmal movement disorder. Nat
    Genet 37:733-738.
    7.Faber ES, Sah P (2003) Calcium-activated potassium
    channels: multiple contributions to neuronal function.
    Neuroscientist 9:181-194.
    8.Gage FH (2000) Mammalian neural stem cells. Science
    287:1433-1438.
    9.Gotz J, Ittner LM (2008) Animal models of Alzheimer's
    disease and frontotemporal dementia. Nat Rev Neurosci
    9:532-544.
    10.Gutierrez R (2003) The GABAergic phenotype of
    the "glutamatergic" granule cells of the dentate gyrus.
    Prog Neurobiol 71:337-358.
    11.Hagihara H, Toyama K, Yamasaki N, Miyakawa T (2009)
    Dissection of hippocampal dentate gyrus from adult
    mouse. J Vis Exp.
    12.Hernandez-Rabaza V, Hontecillas-Prieto L, Velazquez-
    Sanchez C, Ferragud A, Perez-Villaba A, Arcusa A, Barcia
    JA, Trejo JL, Canales JJ (2008) The hippocampal dentate
    gyrus is essential for generating contextual memories of
    fear and drug-induced reward. Neurobiol Learn Mem 90:553-
    559.
    13.Holmes MC, Yau JL, French KL, Seckl JR (1995) The effect
    of adrenalectomy on 5-hydroxytryptamine and
    corticosteroid receptor subtype messenger RNA expression
    in rat hippocampus. Neuroscience 64:327-337.
    14.Hu Z, Yuri K, Ozawa H, Lu H, Kawata M (1997) The in vivo
    time course for elimination of adrenalectomy-induced
    apoptotic profiles from the granule cell layer of the
    rat hippocampus. J Neurosci 17:3981-3989.
    15.Jaarsma D, Postema F, Korf J (1992) Time course and
    distribution of neuronal degeneration in the dentate
    gyrus of rat after adrenalectomy: a silver impregnation
    study. Hippocampus 2:143-150.
    16.Joels M (2007) Role of corticosteroid hormones in the
    dentate gyrus. Prog Brain Res 163:355-370.
    17.Joels M, Stienstra C, Karten Y (2001) Effect of
    adrenalectomy on membrane properties and synaptic
    potentials in rat dentate granule cells. J Neurophysiol
    85:699-707.
    18.Joels M, Karst H, Krugers HJ, Lucassen PJ (2007) Chronic
    stress: implications for neuronal morphology, function
    and neurogenesis. Front Neuroendocrinol 28:72-96.
    19.Joels M, Karst H, DeRijk R, de Kloet ER (2008) The
    coming out of the brain mineralocorticoid receptor.
    Trends Neurosci 31:1-7.
    20.Karst H, Joels M (2001) Calcium currents in rat dentate
    granule cells are altered after adrenalectomy. Eur J
    Neurosci 14:503-512.
    21.Kesner RP (2007) A behavioral analysis of dentate gyrus
    function. Prog Brain Res 163:567-576.
    22.Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski
    GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G
    (1996) Distribution of high-conductance Ca(2+)-activated
    K+ channels in rat brain: targeting to axons and nerve
    terminals. J Neurosci 16:955-963.
    23.Krugers HJ, van der Linden S, van Olst E, Alfarez DN,
    Maslam S, Lucassen PJ, Joels M (2007) Dissociation
    between apoptosis, neurogenesis, and synaptic
    potentiation in the dentate gyrus of adrenalectomized
    rats. Synapse 61:221-230.
    24.Kumar P, Kalonia H, Kumar A (2010) Huntington's disease:
    pathogenesis to animal models. Pharmacol Rep 62:1-14.
    25.Lai GJ, McCobb DP (2002) Opposing actions of adrenal
    androgens and glucocorticoids on alternative splicing of
    Slo potassium channels in bovine chromaffin cells. Proc
    Natl Acad Sci U S A 99:7722-7727.
    26.Lai GJ, McCobb DP (2006) Regulation of alternative
    splicing of Slo K+ channels in adrenal and pituitary
    during the stress-hyporesponsive period of rat
    development. Endocrinology 147:3961-3967.
    27.Lee I, Kesner RP (2004) Differential contributions of
    dorsal hippocampal subregions to memory acquisition and
    retrieval in contextual fear-conditioning. Hippocampus
    14:301-310.
    28.Lees AJ, Hardy J, Revesz T (2009) Parkinson's disease.
    Lancet 373:2055-2066.
    29.Lovell PV, McCobb DP (2001) Pituitary control of BK
    potassium channel function and intrinsic firing
    properties of adrenal chromaffin cells. J Neurosci
    21:3429-3442.
    30.Lu R, Alioua A, Kumar Y, Eghbali M, Stefani E, Toro L
    (2006) MaxiK channel partners: physiological impact. J
    Physiol 570:65-72.
    31.Maclennan KM, Zheng Y, Sheard PW, Williams SM,
    Darlington CL, Smith PF (2003) Adrenalectomy-induced
    cell death in the dentate gyrus: further
    characterisation using TUNEL and effects of the Ginkgo
    biloba extract, EGb 761, and ginkgolide B. Hippocampus
    13:212-225.
    32.Mahmoud SF, Bezzerides AL, Riba R, Lai GJ, Lovell PV,
    Hara Y, McCobb DP (2002) Accurate quantitative RT-PCR
    for relative expression of Slo splice variants. J
    Neurosci Methods 115:189-198.
    33.McNeill TH, Masters JN, Finch CE (1991) Effect of
    chronic adrenalectomy on neuron loss and distribution of
    sulfated glycoprotein-2 in the dentate gyrus of
    prepubertal rats. Exp Neurol 111:140-144.
    34.Pacheco Otalora LF, Hernandez EF, Arshadmansab MF,
    Francisco S, Willis M, Ermolinsky B, Zarei M, Knaus HG,
    Garrido-Sanabria ER (2008) Down-regulation of BK channel
    expression in the pilocarpine model of temporal lobe
    epilepsy. Brain Res 1200:116-131.
    35.Paskitti ME, McCreary BJ, Herman JP (2000) Stress
    regulation of adrenocorticosteroid receptor gene
    transcription and mRNA expression in rat hippocampus:
    time-course analysis. Brain Res Mol Brain Res 80:142-152.
    36.Rolls ET, Kesner RP (2006) A computational theory of
    hippocampal function, and empirical tests of the theory.
    Prog Neurobiol 79:1-48.
    37.Roy EJ, Lynn DM, Bemm CW (1990) Individual variations in
    hippocampal dentate degeneration following
    adrenalectomy. Behavioral and neural biology 54:330-336.
    38.Schreiber M, Salkoff L (1997) A novel calcium-sensing
    domain in the BK channel. Biophysical journal 73:1355-
    1363.
    39.Shipston MJ (2001) Alternative splicing of potassium
    channels: a dynamic switch of cellular excitability.
    Trends in cell biology 11:353-358.
    40.Sloviter RS, Sollas AL, Dean E, Neubort S (1993)
    Adrenalectomy-induced granule cell degeneration in the
    rat hippocampal dentate gyrus: characterization of an in
    vivo model of controlled neuronal death. J Comp Neurol
    330:324-336.
    41.Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas
    AL, Paul LA, Neubort S (1989) Selective loss of
    hippocampal granule cells in the mature rat brain after
    adrenalectomy. Science 243:535-538.
    42.Spanswick SC, Lehmann H, Sutherland RJ (2011a) A novel
    animal model of hippocampal cognitive deficits, slow
    neurodegeneration, and neuroregeneration. Journal of
    biomedicine & biotechnology 2011:527201.
    43.Spanswick SC, Epp JR, Sutherland RJ (2011b) Time-course
    of hippocampal granule cell degeneration and changes in
    adult neurogenesis after adrenalectomy in rats.
    Neuroscience 190:166-176.
    44.Stienstra CM, Joels M (2000) Effect of corticosteroid
    treatment in vitro on adrenalectomy-induced impairment
    of synaptic transmission in the rat dentate gyrus. J
    Neuroendocrinol 12:199-205.
    45.Stienstra CM, Van Der Graaf F, Bosma A, Karten YJ, Hesen
    W, Joels M (1998) Synaptic transmission in the rat
    dentate gyrus after adrenalectomy. Neuroscience 85:1061-
    1071.
    46.Vreugdenhil E, de Kloet ER, Schaaf M, Datson NA (2001)
    Genetic dissection of corticosterone receptor function
    in the rat hippocampus. Eur Neuropsychopharmacol 11:423-
    430.
    47.Xavier GF, Costa VC (2009) Dentate gyrus and spatial
    behaviour. Prog Neuropsychopharmacol Biol Psychiatry
    33:762-773.
    48.Xie J, McCobb DP (1998) Control of alternative splicing
    of potassium channels by stress hormones. Science
    280:443-446.
    49.Yu JY, Upadhyaya AB, Atkinson NS (2006) Tissue-specific
    alternative splicing of BK channel transcripts in
    Drosophila. Genes Brain Behav 5:329-339.
    50.Zarei MM, Zhu N, Alioua A, Eghbali M, Stefani E, Toro L
    (2001) A novel MaxiK splice variant exhibits dominant-
    negative properties for surface expression. J Biol Chem
    276:16232-16239.
    51.Zhao C, Deng W, Gage FH (2008) Mechanisms and functional
    implications of adult neurogenesis. Cell 132:645-660.
    描述: 碩士
    國立政治大學
    神經科學研究所
    97754001
    100
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0097754001
    資料類型: thesis
    顯示於類別:[神經科學研究所 ] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML182檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋